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Abstract
Efficient resource utilization in server clusters is essential for max-
imizing service capacity and minimizing latency while reducing
infrastructure costs, whether in edge clouds or hyperscale deploy-
ments. Current approaches face significant limitations: layer 4 load
balancing (L4LB) alone causes load imbalance over time with long-
lived connections, while layer 7 load balancing (L7LB) introduces
substantial CPU, memory, and network overhead despite enabling
fine-grained server selection based on application-level requests.

This paper presents XO, a set of concept and techniques to en-
able a TCP server to offload entire TCP connection and application-
request processing to another machine at request granularity. To-
gether with L4LB, XO achieves L7LB-level load distribution without
the associated overheads.

CCS Concepts
• Networks → Transport protocols; • Software and its engi-
neering → Distributed systems organizing principles.
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1 Introduction
TCP has been widely used in web applications, disaggregated stor-
age systems, and distributed data processing frameworks running
in a private or public cloud. OS kernels have added a number of
enhancements in their network stack, such as zero copy [8] and I/O
batching [16], and NIC vendors have implemented many offloading
capabilities, such as segmentation offload and TLS offload [22]. The
research community has further advanced the space of TCP accel-
eration towards terabit Ethernet, including radical NIC redesign
with FPGA [23] and the use of multiple CPU cores within a single
stream [6].
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Individual TCP servers are usually part of a scale-out cluster
that expands the service capacity beyond that of a single server.
Many systems distribute network requests to the servers that run
replicated service instances to enhance the throughput, whereas
some systems expand the storage capacity by partitioning the whole
dataset intomultiple storage servers (i.e., sharding). Those strategies
are often employed together (e.g., selected replication [17]). Scale-
out services are usually transparent to the clients; they see a single
service endpoint (e.g., remote IP address and port) and are thus
unaware of the exact server that is serving their requests.

To distribute the network requests to multiple servers, opera-
tors employ load balancers (LBs) [2, 10, 11]. Layer 4 load balancers
(L4LBs) are lightweight because they only need packet-level oper-
ations without reassembling the TCP bytestream. Further, traffic
from the server to the client can bypass the LB device, often called
Direct Server Return (DSR). However, since a connection needs
to be permanently handled by the chosen server and it can last
long, a server cluster that is load-balanced solely by L4LBs could
cause load imbalance over time. Further, L4LBs cannot be used
to route the requests to sharded servers, because they cannot see
the request payload that contains the information to determine
the server (e.g., object id) and the next request sent over the same
connection cannot be routed to another server.

Layer 7 load balancers (L7LBs) [4, 12, 14, 20, 24] proxy the client
TCP connections (and usually TLS sessions) to the backend servers.
They run in the application layer and relay data between the client-
and server-side communication sections. L7LBs can apply more
complex server selection policy than L4LBs, because they reassem-
ble the TCP bytestream and thus can read the application-level
message. Further, since the client connections are terminated at the
L7LB, they can select another server without the client to notice,
for example, when the chosen server does not have a requested
storage data or becomes overwhelmed. However, relaying the data
between the client and server stresses the L7LB’s CPU, memory
and network bandwidth resources.

This paper proposes Remote TCP Connection Offload (XO), a
set of concept and techniques that enables a host to offload a TCP
connection and application-level processing to another host to
utilize the resource of cluster servers in a fine-grained, dynamic
manner. XO achieves the best aspects of L4LB and L7LB. Like L4LB,
ingress traffic goes to the offload target machine via the LB device
but with a lightweight packet-level processing and egress traffic
can bypass the load balancer or the host that has accepted the
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Method System Server select HW Overheads

Legacy
proxy

Nginx, RGW,
HAProxy Per-request – App-level data relay

Connection
splicing

Linux Per-
connection

– In-kernel data copy
AccelTCP [19] SmartNIC In-NIC processing

Connection
migration

Prism [15]
Per-request

Programmable
switch

Connection serialization,
transfer and restorationCapybara [7]

XO – Above and ingress packet
redirection

Table 1: Summary of L7LB Architectures and Features.

connection. Like L7LB, XO enables request-granularity, dynamic
server selection transparently to the clients.

XO is applicable to various scale-out systems, because it supports
both replicated and sharded backend architectures. We validate this
through integration in real applications: nginx as an replicated
backend example, and Ceph, a widely-used object storage system
that scales the storage capacity, as a sharded backend example. XO
supports various deployment scenarios, preserving those of L7LBs.
Cluster servers do not have to connect to the same switch, because
XO does not require switch support, which existing L7LB enhance-
ments based on TCP connection migration, including Prism [15]
and Capybara [7], require. XO thus can be used by cloud instances
that could be instantiated in an unspecific physical machine or rack
in the datacenter.

2 Motivation
Since the performance issues of L7LBs are known, there have been
a series of enhancements that we summarize in Table 1.
Connection splicing reduces the data movement overheads by
relaying data between two connections inside the kernel [5, 18].
This avoids two data copies, one from the kernel to the application
and the other from the application to the kernel. AccelTCP [19]
takes this step further, also removing DMA overheads by relaying
data inside the SmartNIC.

However, those approaches, including AccelTCP, cannot perform
payload-touching operations that legacy proxies can. Therefore,
they are useful only when L7LB’s job is merely to decide the (per-
manent) server (e.g., the least loaded one) at the connection setup
time and simply copy the application-layer data between the client-
and backend-side connections. Many L7LB systems require data-
touching operations. For example, L7LB in object storage systems,
including RGW in Ceph, require pprotocol translation between
HTTP and msgr2 (§ 5), which needs to read application-level head-
ers that constantly appear in the TCP bytestream.
TCP connection migration takes a more radical step, moving
a TCP endpoint itself to another server with the aid of a pro-
grammable switch. It has been achieved by Prism [15] and Capy-
bara [7]. This class of approaches enables the L7LB to handoff the
TCP endpoint that has connected with the client to a server (e.g.,
the one that holds the requested object). Connection migration
eliminates data relaying overheads of L7LBs, because the upstream
switch redirects the ingress (client to server) packets to the server
and egress packets are directly sent to the client while the switch
rewrites their source IP address to that of L7LB. Unlike connection

splicing, those approaches can select a server in a request granu-
larity as with legacy L7LBs, because every request is read by the
application, which might be an instance that has been migrated
and restored with the connection, and the application can migrate
the connection and its state again based on the next request.

TCP connectionmigration has deployment problems. The servers
between which a connection endpoint moves must be connected
to the same switch. This is a serious drawback, because cloud com-
puting instances are often VMs and they could be instantiated in
unpredictable server or rack [13]. Further, the switch needs to be
programmable one and the tenants must be able to configure it. Fur-
ther, the major programmable switch ASIC released in the market,
Intel/Barefoot Tofino has been discontinued for production since
early 2023. Finally, it is unclear whether Prism and Capybara are
general, because they have not been applied to real applications.

Therefore, we explore a solution that can mitigate the legacy
L7LB overheads while enabling request-granularity server selection
and flexible instance allocation by designing XO.

3 XO Architecture
The XO architecture is based on the service model that repeats:
(1) Receiving a request from the client over a TCP connection;
(2) Executing a task (e.g., reading a data from the storage and

preparing the response data) and then;
(3) Sending back a response to the client over the TCP connection.

The server, which we call host, offloads the last two steps to an-
other server, which we call target; once the offload begins, the first
step is also offloaded. After one or more offloaded processing, XO
completes by the host reclaiming the service execution state from
the target. The host is equivalent to L7LB in terms of establishing a
TCP connection with the client and selecting a backend server.

XO is transparent to the clients. They do not notice that the
offload is ongoing (except for through the side channels such as
performance characteristics), because the client-side TCP (and TLS)
endpoint is not disrupted. This significantly contributes to XO
being general, because client and server applications are often
implemented by different parties. For example, various S3 storage
client implementations access the S3 cloud storage.

When and how offload begins? The application on the host makes
an offload decision when it reads a request in the TCP connection
(and decrypts the request if TLS is used). Since this enables request-
granularity server selection, XO can use the same server selection
policy as legacy proxies. For example, the application would choose
a server in a round-robin fashion or based on the current load among
the replicated servers. Note that communication between the LB
control plane and servers to signal the current load is trivial [3, 17].
In the sharded server cluster, it would choose the server whose
local storage has the data requested by the client in the sharded
server cluster.

When and how offload completes? offload completes with the
service execution returns to the host from the target. Completion
decision can be made by the host, for example, when it finds a better
offload target based on monitoring, or by the target, for example,
finding itself overwhelmed or identifying that it cannot serve the
requested storage data. After the completion of offload, the host
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Figure 1: Data paths of regular L7LB, Prism, and XO. Traffic
flows are represented by directional arrows: black arrows indicate
client requests, while blue arrows show server responses.

continues to serve the requests without offload (i.e., like a legacy
L7LB) or makes another offload decision.

4 XO Design
XO has two key components: TCP and application state transfer
and HW/SW hybrid traffic steering.

4.1 Connection State Transfer
Offloading the server task execution needs transferring TCP and
other application-level (e.g., TLS) connection state from the host to
the target (outbound) when the offload begins and the other way
around (inbound) when the offload completes. Figure 2 illustrates
the outbound (left) and inbound (right) state transfer sequence,
which we describe next.

Connection state transfer needs endpoint operations and flow
steering operations. The former serializes and restores the endpoint
state; the latter redirects the ingress packets, whichwould otherwise
go to the host, to the target. The source address of the packets sent
by the target is modified that of the host, enabling DSR widely used
by L4LBs [10]1.

Correctly and efficiently transferring connection state requires
a strict order of endpoint operations and flow steering operation.
XO’s connection state transfer protocol is based on two objectives.
First, to ensure correctness, it prevents undesirable packet arrivals
at the transport layer during state transfer, since packets reaching
a closed TCP socket trigger client connection resets [9, 15]. Second,
to enable efficient transfer, it minimizes RPCs between the host and
target.

4.1.1 Outbound Transfer. To prevent the ingress packets from
reaching the TCP state being serialized, the host installs a packet
filter rule (we discuss the method in § 4.2) that drops those packets
( 1○ in Figure 2). Note that this rule just drops unimportant packets,
such as keep-alive or spurious retransmission. It does not block the
connection progress, because the outbound state transfer process
begins upon the offloading decision made by the application that
has already received the request (§ 3); the next expected connection
data is the response to the client.
1Since the networks are usually virtualized in the datacenters and cluster nodes, across
the racks, typically use the same subnet, this address modification, whether by L4LB
or XO, does not cause spoofing problem.

After this step, the TLS state (initialization vector, session key,
and record sequence number) along with the TCP state (sequence
numbers, negotiated options, window sizes, and buffer data.) can
be serialized safely ( 2○).

The state is transferred to the target via a BEGIN_OFFLOAD
RPC. The target then restores the connection, handling potential
port conflicts by remapping ports if needed when connections
transferred by different hosts share the same port ( 3○). The target
then installs a packet filter rule that rewrite the source IP address
of egress packets to match the host’s address ( 4○).

Upon state restoration, the target sends a TARGET_READY RPC
that requests the host install a packet filter rule that redirects the
ingress packets in the connection to the target ( 5○) and remove the
rule that blocks the ingress traffic ( 6○).

After that, the host sends a HOST_READY RPC to the target,
which then begins the offloaded task.

4.1.2 Inbound Transfer. This operation is used when offload com-
pletes. The process is similar to the outbound transfer, but differs
in flow steering operations. The target blocks ingress packets ( 7○),
serializes current connection state ( 8○), and transmits state back
to the host with a RPC TARGET_DONE. Upon receiving the state,
the host restores the connection ( 9○), removes redirection rules
(10○), and sends a final RPC END_OFFLOAD asking the target to
remove source IP rewriting (11○) and unblock ingress traffic (12○).
Upon completion, the system returns to its original configuration
prior to the offload.

4.2 Flow Steering
Among various flow steering operations (redirection, blocking, and
source address modification), flow redirection at the host ( 5○ in
Figure 2) is the most challenging to achieve two properties:
• Fast rule installation: We must install flow rules rapidly to
minimize connection state transfer latency. This is particularly
critical when the offload target changes frequently.

• Efficient traffic redirection: The host must redirect the traffic,
including ingress ACKs and subsequent requests, at a high rate
to maintain the connection performance. Further, it must be done
with low CPU usage to allocate as many CPU cycles as possible
to the applications on the host.
We analyze the available options (§ 4.2.1), and based on our obser-

vation, we design a HW/SW-hybrid traffic redirection mechanism
(§ 4.2.2 and § 4.2.3).

4.2.1 Quickness and Efficiency Trade-off. Linux provides two op-
tions for flow-granularity traffic redirection:

One option is tc-flower [1], which is a legacy yet efficient
approach that matches ingress/egress packets against flow rules
based on keys such as IP addresses and ports. Its match and ac-
tion procedures can be offloaded to NIC ASIC, as demonstrated by
Open vSwitch, which uses tc-flower to offload the datapath op-
erations on the cached flows2. This hardware offloading capability
is available in various commodity (not particularly “smart”) NICs,
including Intel E810 (2020), NVIDIA/Mellanox ConnectX-5 (2016)
and their successors, and Netronome Agilio CX (2018).

2This is also called ASAP in NVIDIA/Mellanox NICs.

39



APNET 2025, August 07–08, 2025, Shang Hai, China Shuo Li, Steven W.D. Chien, Tianyi Gao, and Michio Honda

Remove src IP rewrite rule

Insert src IP rewrite rule

RPC: BEGIN_OFFLOAD

Application request

 Establish TCP&TLS connection

Block ingress packets

RPC: HOST_READY

Application response

Serialize TCP&TLS

Deserialize TCP&TLS

Install redirection rules
Unblock ingress packets

Client

RPC: END_OFFLOAD

RPC: TARGET_DONE

Block ingress packets
Serialize TCP&TLS state

Deserialize TCP&TLS state
Remove redirection rules

Client
Application requests/responses

Unblock ingress packets

Application response

Application requests/responsesApplication requests/responses

Operations to avoid TCP resetsOperations for state serialization/deserialization

Application request

Host Target

RPC: TARGET_READY

Outbound
Transfer

Inbound
Transfer

Host Target

Operations related to redirection (including TC & eBPF rules)

1
2

3
4

5
6

7
8

9
10

11

12

Figure 2: XO connection state transfer protocol (§ 4.1).

The other option is eBPF programs attached to tc classifier or
XDP. They run below the TCP implementation in the network stack
to apply custom packet-level operations to the ingress/egress traffic.
An eBPF program can refer to amap, a shared memory between the
kernel, user-space and eBPF programs, to make packet processing
decision.

We measured their flow installation/withdrawal time and packet
forwarding performance. Our results in Table 2 highlight their key
characteristics.

Command (µs) Rate (Mpps) Latency (µs)
Insert Remove 64B 1500B 64B 1500B

eBPF-tc 4.01 3.77 0.79 0.78 21.06 22.42
eBPF-XDP 38.31 7.41 6.65 2.07 16.52 18.45
tc (CX5) 476 404 33.01 2.07 8.26 9.89
tc (CX7) 2143 1134 33.08 2.07 8.41 9.97
tc (Agilio) 68 65 22.12 2.07 19.77 20.58

Table 2: eBPF and tc-flower flow command execution time
and packet forwarding rate and latency. The bottom three
rows indicate tc-flower hardware offload in NVIDIA ConnectX-
5, ConnectX-7 and Netronome Agilio NICs, respectively.

eBPF achieves rapid flow installation. That in tc (eBPF-tc) is
faster than in XDP (eBPF-XDP) due to its higher position in the
stack. However, XDP provides superior packet forwarding rates
by operating at the device driver level. tc-flower (with hardware
offload) exhibits longer flow installation times due to kernel locks
and device configuration, with significant variations across NICs:
ConnectX-5/7 (CX5/7) requires 297–597 µs, while Agilio needs only
65–69 µs. However, all the NICs achieve high packet forwarding
rates through hardware offload. Hardware-based forwarding is
crucial also for CPU efficiency. For comparison, an eBPF program
with XDP consumes 77 % of a CPU core when forwarding 1500 byte
packets between 25Gb/s links.

4.2.2 Hybrid Packet Redirection Design. Based on our observations,
we design a hardware-software hybrid approach for packet redirec-
tion in XO, which combines the advantages of both methods: fast
rule insertion from eBPF and hardware-based packet redirection
from tc-flower.

In our design, the host runs an eBPF program that processes
ingress packets based on the flow table stored in the map. When

eBPF

TC-HW

TCP

(a) Before HW rule activa-
tion.

TC-HW

eBPF

TCP

(b) After HW rule activa-
tion.

Figure 3: HW-SW hybrid packet redirection. Dotted frames
indicate pending hardware rules, red circular arrows show redirec-
tion points, and black arrow lines represent data flow.

traffic redirection is needed ( 5○ in Figure 2), the application on the
host inserts the flow rule in the eBPF map in a blocking manner
(synchronously) while initiating tc-flower hardware offload in
a non-blocking manner (asynchronously). As a result, packets are
initially redirected by the eBPF rule while the hardware rule is still
being configured (Figure 3a). Once hardware-based rule has been
activated, packet redirection is done in the hardware (Figure 3b),
enabling more efficient processing.

While this hybrid mechanism enables efficient outbound state
transfer, flow redirection withdrawal (10○) must be synchronous for
both software and hardware rules. Consider when a connection
returns to the host after request completion ( 9○). If hardware-based
redirection at the host remains active due to asynchronous with-
drawal, the remote would receive packets after removing its rules
(12○), triggering unwanted connection reset packets. Similarly, when
the connection is offloaded to a new target device, lingering hard-
ware rules on the host would prevent new eBPF rules from taking
effect, causing packets to flow to the previous target. Also, if the
host needs to send data (e.g., cached content) directly to the client,
active hardware redirection in the host would prevent receiving
ACKs, stalling the TCP connection.

4.2.3 Queue-based Rule Management. Synchronous flow rule with-
drawal is challenging when the rules are installed asynchronously
in parallel. As shown in Figure 4 left (Without user queue), when
application threads issue syscalls to request the kernel to insert
or remove flow redirection rules, each syscall execution acquires
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Figure 4: In-kernel command backlog (left) and user-space
queue (right) discussed in § 4.2.3. In this example three worker
threads issue rule insertions (I) and removals (R). With the user-
space queue, offsetting removal (R2) cancels the unexecuted inser-
tion (R1.)

kernel locks used by the tc subsystem or NIC driver to track hard-
ware rules. This creates a backlog when multiple asynchronous
rule insertion commands are issued, and those commands are seri-
alized over the locks, blocking each syscall execution for a duration
of the hardware rule operation time multiplied by the number of
preceding commands in the backlog.

While delayed rule insertion is tolerable due to our hybrid packet
redirection design, delayed rule withdrawal is problematic. Once
a command (e.g., I2 in Figure 4 left) enters the kernel backlog, it
cannot be cancelled even when an offsetting deletion command
(R2) arrives. This is particularly problematic for XO where flow
rules sometimes have short lifetimes (e.g., single request duration).
A deletion command must wait for its corresponding insertion to
complete before executing.

To address this issue, we implement a user-space queue (Figure 4
right) to allow the offsetting deletion command to cancel the execu-
tion of the preceding insertion command. It is a multiple-producer
single-consumer queue that allows application worker threads to
enqueue commands while a dedicated insertion thread pops the
command and pushes it to the kernel synchronously. This design
also enables bounded rule insertion latency through configuration
of the queue size, allowing operators to adapt to different NICs’
rule insertion speeds.

4.2.4 Ingress Filtering and Egress Source Address Modification. The
implementation of the other flow steering operations is straight-
forward. For ingress traffic blocking ( 1○ and 7○ in Figure 2), we
use eBPF due to its quick deployment. This is sufficient because
after connection handoff begins ( 1○ in Figure 2), incoming pack-
ets consist only of spurious retransmissions or keep-alive packets
(§ 4.1.1). Similarly, source address modification ( 4○) is implemented
using eBPF or software tc, because this operation incurs negligible
overheads.

5 Evaluation
XO runs on the Linux network stack, which is crucial for prac-
ticality [6, 23]. XO does not require kernel modification, instead
leveraging existing stack features including tc and eBPF subsys-
tems.
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Applications. To demonstrate the applicability of XO to different
types of backend servers, we integrated XO in two systems. The
first is nginx, a web server that also acts as L7LB (legacy proxy) for
replicated servers. The other is Ceph, widely-used object storage
system. It partitions the data into multiple servers and its Rados
Gateway (RGW) subsystem acts as L7LB that computes the location
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(server) of the requested object and issues storage I/O requests to
that server over the msgr2 protocol.

Experiment setup. Our testbed consists of sixmachines connected
to the same switch with following role assignment: one client with
a 100Gb/s link, one frontend (host in XO) and four backends (target
serverss) with 25Gb/s link. The client machine is equipped with
two AMD EPYC 9334 CPUs, 256GB of RAM. The other machines
are equipped with two Intel Xeon E5-2630v4 CPUs and NVIDIA
CX5.

Figure 5 shows throughput and CPU usage of the nginx servers.
XO efficiently utilizes the aggregate bandwidth of all the backend
servers, as shown in the resulting throughput, while utilizing their
CPU resources efficiently or without overwhelming the frontend
or L7LB.

Next, we implement a simple offload policy that selects the server
based on CPU usage, where each cluster server periodically reports
the current load to the frontend. Figure 6 shows that XO achieves
flexible load balancing that the live connections are dynamically
shifted to more idle servers.

Finally, in Figure 7, we show that XO improves throughput in the
Ceph cluster, a shareded backend deployment with efficient data
path. This experiment also shows that our hybrid approach (XO
(Hybrid)) exhibits the advantage of hardware-based packet redirec-
tion for large objects in comparison to software-only approach (XO
(eBPF)).

5.1 Connection State Transfer Latency

Operation Latency [µs]

(H) Block flow 5
(H) Serialize TLS 3
(H) Serialize TCP 15
(H) State transferring to the target 404

(H) Sending RPC: BEGIN_OFFLOAD
(T) Block flow 4
(T) Restore TCP 42
(T) Restore TLS 20
(T) Install source IP rewrite rule 95
(T) Unblock flow 4
(H) Received RPC: TARGET_READY

(H) Install redirection rule and unblock 4
(H) Send RPC: HOST_READY 110

Total 541

Table 3: Outbound state transfer latency breakdown. H and T
indicate operations at the host or target remote sides respectively.
All indented operations are included in the state transfer duration.

Table 3 shows latency breakdown of outbound state transfer
latency of XO (§ 4.1.1). Since RPC latency is measured at the host,
the last HOST_READY RPC time is a conservative estimate, because
the target can start data transfer as soon as receiving that RPC
request. Inbound state transfer takes similar time, plus, hardware
rule removal time that must occur in a synchronousmanner (§ 4.2.2),
which is shown in the Remove column in Table 2.

The vast majority of latency comes from RPCs. Fortunately, there
exist many low-latency RPC techniques even without relying on

kernel-bypass networking. For example, Homa [21] reports 15 µs
of RPC RTT with low tail latency.

TCP connection serialization or restoration involves 13 syscalls,
each requires socket locking. If we modify the stack, it is trivial to
merge those syscalls and locks.

6 Discussion
The interplay between throughput, latency, and CPU usage demon-
strates XO’s effectiveness across different scenarios. Performance
differences between XO-CX5 and XO-Agilio highlight how hard-
ware capabilities influence system behavior. As NIC hardware con-
tinues to evolve with faster rule processing and improved offloading
capabilities, XO’s benefits should become even more pronounced,
promising greater performance advantages in throughput, latency,
and CPU efficiency.

On the other hand, XO calls for the need for faster, more parallel
NIC reconfiguration. Further, we also observed that, even if the
hardware returns completion of the rule insertion, the NIC rule is
still inactive for a short time.

As more and more offloaded network processing is imposed
on the NICs, we believe it’s time to think about better hardware-
software interfaces, at least taking into account the reconfiguration
time, internal parallelism, consistency model, and even transac-
tional interfaces to atomically execute multiple commands. Such
NIC abstractions would greatly simplify building efficient XO-like
systems, for example, enabling multiple flow rule insertions in
parallel.

Some modern NICs, such as Pensando Elba, are equipped with
programmable P4 ASIC. Since those ASICs are designed with fre-
quent match-action rule updates in mind, they will enable faster
hardware rule updates than those we tested in this paper.

7 Conclusion
This paper presented XO, which combines efficiency of L4LBs and
flexibility of L7LBs. We addressed challenges in enabling a new
concept of TCP offload to improve the resource utilization and
service capacity of the scale-out systems, which makes up our con-
tributions. First, we designed efficient TCP state transfer protocol
that does not require switch support and thus enables location-
independence property of the server instances. Second, we enabled
a hardware-software hybrid method that steers network traffic at
the end system based on the features available in commodity NICs.
Finally, unlike the state-of-the-art L7LB architecture, such as Prism
and Capybara, we integrated XO with real-world applications that
use replicated or sharded backends, nginx and Ceph, respectively,
demonstrating XO’s generality and applicability.
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