
Rethinking the Role of Network Stacks
for Website Fingerprinting Defenses

Elisaveta Lavrentieva, Marc Juarez, and Michio Honda
University of Edinburgh

ACM HotNets 2025, 18th November

Client CDN/Server
https://***ISP

2

What Website Fingerprinting does
Bursts, bandwidth usage,
packet sizes, flow sizes
(Dyer et al [S&P’12], NetShaper
[Sec’24] etc)

Motivation
● Website fingerprinting (WF) over encrypted traffic is real

○ Inferring website/page identity the users visit

3

Motivation
● Website fingerprinting (WF) over encrypted traffic is real

○ Inferring website/page identity the users visit
■ National (e.g., censorship) and commercial (e.g., targeting ads)

interest
■ Internet traffic is now more and more encrypted

● TLS/QUIC, DoH, ECH

4

Protecting the users from WF seems crucial, but
are the current defenses practical?

Client CDN/Server
https://***ISP

5

What the WF defenses want to do

Obfuscate traffic features
(Tamaraw [CCS’14], Surakav [S&P’22] etc)

WF defenses in reality
● Existing defenses operate at the app level

6

WF defenses in reality
● Existing defenses operate at the app level

○ Inconsistent
■ No guarantees that the stack generates intended packet

sequences

7

WF defenses in reality
● Existing defenses operate at the app level

○ Inconsistent
■ No guarantees that the stack generates intended packet

sequences
○ Inefficient

■ App-limited flow must be enforced

8

App-level obfuscation is inconsistent
● Application data transmissions are asynchronous

○ Send buffering
■ Packetization based on PMTU
■ Transmissions ack-clocked

○ Segmentation Offload (TSO)
■ Micro bursts at a line rate

○ Packet scheduler
■ Fair queuing, pacing

9

App
TLS

TCP/IP
I/O

App

kTLS
TCP/IP

App
QUIC

UDP/IP

I/O I/O

user
kernel

stack components

True for various transport
protocol organizations

App-level obfuscation is inefficient
● The application needs to enforce app-limited flows

○ Interleaved send operations
○ Small MSS
○ Small advertised window (awnd)

10

Syn [MSS=1024]
Syn/Ack

Ack [awnd=1536]
Data [seq 1-1025]
Data [seq 1025-1536]

Client Server

● HTTPOS [NDSS’11] example of enforcing 1024 and 512B packet burst:

Stob: The case for stack-level obfuscation support

● New stack abstraction for packet sequence obfuscation

11

Stob: The case for stack-level obfuscation support

● New stack abstraction for packet sequence obfuscation
● App/admin creates and installs obfuscation policy

12

Obf.
policy

Stack

e.g., per-packet size/time
(Tamaraw [CCS’14], Surakov [S&P’22] etc)
in eBPF map

App

Stob: The case for stack-level obfuscation support

● New stack abstraction for packet sequence obfuscation
● App/admin creates and installs obfuscation policy
● Cooperate with other decisions [1]

[1] Making Linux TCP Fast, Netdev conference 1.2, 2016 13

Qdisc TSO

Pacing
rate

Burst
size

Packet
size

CCA PMTUD Obf.
policy

Stack

e.g., per-packet size/time
(Tamaraw [CCS’14], Surakov [S&P’22] etc)
in eBPF map

App

Preliminary experiment
● Simulate a server-side kernel website fingerprinting defense

14

C SOriginal C SS C C S S S

CSplit C S C C S

C SDelayed C SS C C S S S

Preliminary experiment
● Investigate the censorship scenario

15

C STrace 1 C SS

CTrace 2 C C C

C STrace 3 C SS C C S S S

S SS S S S

Preliminary experiment

N Original Split Delayed Combined

15 0.798 ± 0.017 0.825 ± 0.024 0.825 ± 0.030 0.795 ± 0.031

30 0.884 ± 0.007 0.860 ± 0.013 0.855 ± 0.030 0.850 ± 0.062

45 0.938 ± 0.016 0.897 ± 0.030 0.913 ± 0.021 0.904 ± 0.004

All 0.963 ± 0.002 0.980 ± 0.008 0.980 ± 0.014 0.992 ± 0.009

16

Preliminary experiment

N Original Split Delayed Combined

15 0.798 ± 0.017 0.825 ± 0.024 0.825 ± 0.030 0.795 ± 0.031

30 0.884 ± 0.007 0.860 ± 0.013 0.855 ± 0.030 0.850 ± 0.062

45 0.938 ± 0.016 0.897 ± 0.030 0.913 ± 0.021 0.904 ± 0.004

All 0.963 ± 0.002 0.980 ± 0.008 0.980 ± 0.014 0.992 ± 0.009

17

Performance implications

18

● Many defenses pre-generate target traces (e.g., per-packet
size/time)
○ Tamaraw [CCS’14], Surakov [S&P’22] etc

● Transmission inefficiency is the main overhead

Performance impact of packet and TSO size

19

TSO size

Pkt. size

● Single flow (on a single core) over incremental reduction of TSO
size (up to max(1, 44 - 2𝛼)) and packet size (up to 1500 - 10𝛼)

Sustain a high
throughput range

Summary and research agenda
● Existing WF defenses are inconsistent or inefficient

○ Stack-level support for traffic obfuscation is needed

20

Summary and research agenda
● Existing WF defenses are inconsistent or inefficient

○ Stack-level support for traffic obfuscation is needed

● Deployment challenge
○ How to incentivise CDN operators?

■ Ensure low performance overheads
■ Guarantee differential privacy (NetShaper [Sec’24])

21

Summary and research agenda
● Existing WF defenses are inconsistent or inefficient

○ Stack-level support for traffic obfuscation is needed

● Deployment challenge
○ How to incentivise CDN operators?

■ Ensure low performance overheads
■ Guarantee differential privacy (NetShaper [Sec’24])

● CCA interplay challenge
○ How to avoid conflict or confusion with CCA’s transmit decisions?

■ Make CCA obfuscation aware

22

