Rethinking the Role of Network Stacks
for Website Fingerprinting Defenses

Elisaveta Lavrentieva, Marc Juarez, and Michio Honda
University of Edinburgh
ACM HotNets 2025, 18th November

R\ VE'?
(PR THE UNIVERSITY of EDINBURGH

& informatics

\;2'

What Website Fingerprinting does

Bursts, bandwidth usage,

packet sizes, flow sizes

(Dyer et al [S&P’12], NetShaper
[Sec’24] etc)

. CDN/Server
Client @ https://***

Motivation

e Website fingerprinting (WF) over encrypted traffic is real
o Inferring website/page identity the users visit

Motivation

e Website fingerprinting (WF) over encrypted traffic is real

o Inferring website/page identity the users visit
m National (e.g., censorship) and commercial (e.g., targeting ads)
interest
m Internet traffic is now more and more encrypted
e TLS/QUIC, DoH, ECH

Protecting the users from WF seems crucial, but
are the current defenses practical?

What the WF defenses want to do

Client

]

CDN/Server
https://***

Obfuscate traffic features
(Tamaraw [CCS™14], Surakav [S&P’22] etc)

WF defenses in reality

e Existing defenses operate at the app level

WF defenses in reality

e Existing defenses operate at the app level

o Inconsistent
m No guarantees that the stack generates intended packet
sequences

WF defenses in reality

e Existing defenses operate at the app level

o Inconsistent
m No guarantees that the stack generates intended packet
sequences

o Inefficient
m App-limited flow must be enforced

App-level obfuscation Is inconsistent

e Application data transmissions are asynchronous

o Send buffering
m Packetization based on PMTU
m Transmissions ack-clocked
o Segmentation Offload (TSO)
m Micro bursts at a line rate
o Packet scheduler
m Fair queuing, pacing

True for various transport
protocol organizations

App || App | | App |

TLS QUIC | ==

---------- o [kTLS

kernel [Fcpyip | LUDPIIP | [Tycp/ip

o J[1o | [1o |

[]stack components

App-level obfuscation is inefficient

e The application needs to enforce app-limited flows

o Interleaved send operations
o Small MSS
o Small advertised window (awnd)

e HTTPOS [npss'11] example of enforcing 1024 and 512B packet burst:

Client Server
Syn [MSS=1024]

— SYyn Vo102 |
. Syn/Ack
Ack [awnd=1536]

Data [seq 1-1025]

Data [seq 1025-1536]

10

Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation

11

Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation
e App/admin creates and installs obfuscation policy

P et e e T B

o
=3
G

—-— - —

: (Tamaraw [CCS’14], Surakov [S&P'22] etc)
' in eBPF map

12

Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation
e App/admin creates and installs obfuscation policy
e Cooperate with other decisions [1]

/

P et e e T B

\

' e.g., per-packet size/time

I (Tamaraw [CCS™14], Surakov [S&P’22] etc)

Obf.
CCA PMTUD policy
Pacing Burst Packet
rate size size
Qdisc TSO Stack

[1] Making Linux TCP Fast, Netdev conference 1.2, 2016

i in eBPF map

13

Preliminary experiment

e Simulate a server-side kernel website fingerprinting defense

- Original clc] [s]s]s] [c]c] [s][s]s]ooo
Split cTc] WEENS] [clc] [T ---
- Delayed c|c s[s]s clc s[s[s]ooo

14

Preliminary experiment

e Investigate the censorship scenario

Trace 1 cl|cC S| s |s
Trace 2 CcC |C S S |S C C S| S S
Trace 3 Cl|cC s|s|s C| C s[s[s] ocoo

15

Preliminary experiment

A
N Original Split Delayed Combined
15 0.798 £ 0.017 0.825 + 0.024 0.825 + 0.030 0.795 + 0.031
30 0.884 + 0.007 0.860 + 0.013 0.855 + 0.030 0.850 + 0.062
45 0.938 + 0.016 0.897 £ 0.030 0.913 + 0.021 0.904 + 0.004
* All 0.963 + 0.002 0.980 + 0.008 0.980 + 0.014 0.992 + 0.009

16

Preliminary experiment

A
N Original Split Delayed Combined
15 0.798 £ 0.017 0.825 + 0.024 0.825 + 0.030 0.795 + 0.031
30 0.884 + 0.007 0.860 + 0.013 0.855 + 0.030 0.850 + 0.062
45 0.938 + 0.016 0.897 £ 0.030 0.913 + 0.021 0.904 + 0.004
v All 0.963 + 0.002 0.980 + 0.008 0.980 + 0.014 0.992 + 0.009

17

Performance implications

e Many defenses pre-generate target traces (e.g., per-packet
size/time)
o Tamaraw [CCS'14], Surakov [S&P’22] etc
e Transmission inefficiency is the main overhead

18

Performance impact of packet and TSO size

e Single flow (on a single core) over incremental reduction of TSO
size (up to max(1, 44 - 2a)) and packet size (up to 1500 - 10a)

TSO size
- |:|:| 0oo0o

\f} .
Pkt. size

S
®
)
®
®
®
®
®
°

Sustain a high
throughput range

o
FETETEN BCRTr |

Throughput [Gbps]
N
o

I 1 I 1 1 I
0 > 10 15 20 25
Packet sequence adjustment degree (a)
19

Summary and research agenda

e Existing WF defenses are inconsistent or inefficient
o Stack-level support for traffic obfuscation is needed

20

Summary and research agenda

e Existing WF defenses are inconsistent or inefficient
o Stack-level support for traffic obfuscation is needed

e Deployment challenge
o How to incentivise CDN operators?
m Ensure low performance overheads
m Guarantee differential privacy (NetShaper [Sec’24])

21

Summary and research agenda

e Existing WF defenses are inconsistent or inefficient
o Stack-level support for traffic obfuscation is needed

e Deployment challenge

o How to incentivise CDN operators?
m Ensure low performance overheads
m Guarantee differential privacy (NetShaper [Sec’24])

e CCA interplay challenge

o How to avoid conflict or confusion with CCA’s transmit decisions?
m Make CCA obfuscation aware

22

