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What Website Fingerprinting does

Bursts, bandwidth usage,

packet sizes, flow sizes

(Dyer et al [S&P’12], NetShaper
[Sec’24] etc)
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Motivation

e Website fingerprinting (WF) over encrypted traffic is real

o Inferring website/page identity the users visit
m National (e.g., censorship) and commercial (e.g., targeting ads)
interest
m Internet traffic is now more and more encrypted
e TLS/QUIC, DoH, ECH

Protecting the users from WF seems crucial, but
are the current defenses practical?



What the WF defenses want to do

Client

]

CDN/Server
https://***

Obfuscate traffic features
(Tamaraw [CCS™14], Surakav [S&P’22] etc)
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WF defenses in reality

e Existing defenses operate at the app level

o Inconsistent
m No guarantees that the stack generates intended packet
sequences

o Inefficient
m App-limited flow must be enforced



App-level obfuscation Is inconsistent

e Application data transmissions are asynchronous

o Send buffering
m Packetization based on PMTU
m Transmissions ack-clocked
o Segmentation Offload (TSO)
m Micro bursts at a line rate
o Packet scheduler
m Fair queuing, pacing

True for various transport
protocol organizations
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App-level obfuscation is inefficient

e The application needs to enforce app-limited flows

o Interleaved send operations
o Small MSS
o Small advertised window (awnd)

e HTTPOS [npss'11] example of enforcing 1024 and 512B packet burst:

Client Server
Syn [MSS=1024]

— SYyn Vo102 |
. Syn/Ack
Ack [awnd=1536]

Data [seq 1-1025]

Data [seq 1025-1536]
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Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation
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Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation
e App/admin creates and installs obfuscation policy
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Stob: The case for stack-level obfuscation support

e New stack abstraction for packet sequence obfuscation
e App/admin creates and installs obfuscation policy
e Cooperate with other decisions [1]

/

P et e e T B

\

' e.g., per-packet size/time

I (Tamaraw [CCS™14], Surakov [S&P’22] etc)

Obf.
CCA PMTUD policy
Pacing Burst Packet
rate size size
Qdisc TSO Stack

____________________

[1] Making Linux TCP Fast, Netdev conference 1.2, 2016

i in eBPF map
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Preliminary experiment

e Simulate a server-side kernel website fingerprinting defense

- Original clc] [s]s]s] [c]c] [s][s]s]ooo
Split cTc] WEENS] [clc] [T ---
- Delayed c|c s[s]s clc s[s[s]ooo

_____________________________________________________________________________________________________________
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Preliminary experiment

e Investigate the censorship scenario

Trace 1 cl|cC S| s |s
Trace 2 CcC |C S S |S C C S| S S
Trace 3 Cl|cC s|s|s C| C s[s[s] ocoo

15



Preliminary experiment

A
N Original Split Delayed Combined
15 0.798 £ 0.017 0.825 + 0.024 0.825 + 0.030 0.795 + 0.031
30 0.884 + 0.007 0.860 + 0.013 0.855 + 0.030 0.850 + 0.062
45 0.938 + 0.016 0.897 £ 0.030 0.913 + 0.021 0.904 + 0.004
* All 0.963 + 0.002 0.980 + 0.008 0.980 + 0.014 0.992 + 0.009

16



Preliminary experiment

A
N Original Split Delayed Combined
15 0.798 £ 0.017 0.825 + 0.024 0.825 + 0.030 0.795 + 0.031
30 0.884 + 0.007 0.860 + 0.013 0.855 + 0.030 0.850 + 0.062
45 0.938 + 0.016 0.897 £ 0.030 0.913 + 0.021 0.904 + 0.004
v All 0.963 + 0.002 0.980 + 0.008 0.980 + 0.014 0.992 + 0.009

17



Performance implications

e Many defenses pre-generate target traces (e.g., per-packet
size/time)
o Tamaraw [CCS'14], Surakov [S&P’22] etc
e Transmission inefficiency is the main overhead
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Performance impact of packet and TSO size

e Single flow (on a single core) over incremental reduction of TSO
size (up to max(1, 44 - 2a)) and packet size (up to 1500 - 10a)
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Summary and research agenda

e Existing WF defenses are inconsistent or inefficient
o Stack-level support for traffic obfuscation is needed
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m Guarantee differential privacy (NetShaper [Sec’24])
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Summary and research agenda

e Existing WF defenses are inconsistent or inefficient
o Stack-level support for traffic obfuscation is needed

e Deployment challenge

o How to incentivise CDN operators?
m Ensure low performance overheads
m Guarantee differential privacy (NetShaper [Sec’24])

e CCA interplay challenge

o How to avoid conflict or confusion with CCA’s transmit decisions?
m Make CCA obfuscation aware
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