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Abstract—Cloud applications need network data encryption
to isolate from other tenants and protect their data from
potential eavesdroppers in the network infrastructure. This
paper presents SMT, a protocol design for emerging datacenter
transport protocols, such as NDP and Homa, to integrate
data encryption. SMT integrates TLS-based encryption with a
message-based transport protocol that supports efficient Remote
Procedure Calls (RPCs), a common workload in datacenters.
This architecture enables the use of per-message record sequence
number spaces in a secure session, while ensuring unique
message identities to prevent replay attacks. It also enables the
use of existing NIC offloads designed for TLS over TCP, while
being a native transport protocol alongside TCP and UDP. We
implement SMT in the Linux kernel by extending Homa/Linux
and improve RPC throughput by up to 41 % and latency by
up to 35 % in comparison to TLS/TCP.

1. Introduction

Datacenter transport protocols, pioneered by DCTCP [3],
have evolved over the last decade to achieve high throughput
for bulk transfer while maintaining low latency for small mes-
sages. The latest ones, including NDP [33] and Homa [59],
are not extensions to TCP—they are message-based and
employ clean-slate congestion control designs often with
switch support to enable fine-grained network utilization.
While most of these protocols have been implemented
in user space or simulators, the availability of the Linux
kernel implementation of Homa since 2021 [63], along with
its demonstrated use in industry [53], makes widespread
adoption of alternative transport protocols within reach.

However, what if the applications want data encryption to
isolate themselves from other tenants and protect themselves
from network infrastructure? There is widespread agree-
ment that datacenter networks need encryption [19]. Major
operators already adopt it, as seen in TLS deployment in
Google [31] and Meta [55, 56] datacenters today. It protects
users or operators from malicious insiders who may act as
man-in-the-middle [57]1. It is also essential in multi-tenant
datacenters, where compromised tenant instances may attack
other tenants or the shared network infrastructure [5, 39],
which is often misconfigured [57, 73] or lacks timely security
updates [1].

We present a secure message transport protocol (SMT).
The design goal of SMT is to achieve performance-related

1. The incident indeed happened in 2013 and it accelerated adoption of
traffic encryption [28].

properties of datacenter transports while supporting the same
threat model as TLS/TCP—to protect the endpoints from
data breach, packet injection, and replay attacks. SMT uses
per-message TLS record sequence number space in the au-
thenticated session, while guaranteeing message uniqueness
to protect the applications from replay attacks. This design
enables unordered encrypted messages while using existing
TLS offload and segmentation offload available in commodity
NICs [68]. This means that SMT can be adopted without
compromising hardware offload currently used by TLS/TCP.
SMT uses plaintext message identifiers and offsets in packet
headers. This enables the network or the host stack to perform
message-granularity operations, such as load balancing across
multiple paths or CPU cores. SMT can be a native transport
protocol without relying on TCP or UDP protocol number.
This generalizes the design primitives of SMT, allowing
them to be applied to secure other datacenter transports.

We have implemented SMT in the Linux kernel by
extending Homa/Linux [63], because it provides a middle
ground as an unencrypted but message-based datacenter
transport protocol that could be transformed to another
protocol like NDP (§ 2). This paper makes two main
contributions:
• We identify a design point of an encrypted message-based

datacenter transport protocol that is native and compatible
with existing TLS offload while enabling the same security
properties as TLS/TCP.

• We provide a proof-of-concept implementation of SMT
that exhibits at most 41% higher throughput than TLS/TCP.
We also report the application porting effort to use SMT
through two applications: Redis key value store and NVMe-
oF in-kernel storage subsystem.

2. Design Space

Datacenter applications exhibit Remote Procedure Call
(RPC) workloads, where they send or receive structured
messages in a request-response manner [27, 80]. RPCs
are used for a range of purposes, including API calls
between services [98, 52], access to in-memory key-value
caches [51] or blob storage [66], and cluster management
in microservice [99] or FaaS [18] platforms. RPCs are
typically small (e.g., [81] reports that half of RPCs have
median requests and responses under 1530 B and 315 B,
respectively) and highly concurrent.

TCP is fundamentally unsuitable for RPCs because of
two reasons. First, it disregards message boundaries that
the application would have implied with separate send calls.

1



Encrypt. Abstract. Offload Protocol Parallelism
TcpCrypt [11] TcpCrypt Stream TSO TCP Conn.

QUIC[40] QUIC-TLS Stream N UDP Conn.

TCPLS[77] TLS Stream TSO TCP Conn.

TLS/TCP[68] TLS Stream Enc.+TSO TCP Conn.
SMT TLS Msg. Enc.+TSO New Msg.
Homa[63]/NDP[33] - Msg. TSO New Msg.

MTP[43] - Msg. N/A New Msg.

Falcon [84]/UET [16] PSP Msg. Full UDP Msg. Custom NIC

SRD[82] - Msg. Full N/A Msg. Custom NIC

KCM[45]/µTCP[61] - Msg. TSO TCP Conn.

Table 1: Key properties of encrypted or message-based transport methods
(discussed in § 2.1 and § 2.2).

Src port Dst port
Msg ID
Msg len
Msg off
Payload

Figure 1: Generalized message-based
transport packet format based on
Homa [63] and MTP [43]. Shaded parts
are identical between the packets that
belong to the same message. Msg off
identifies the position of this packet
within the message.

Therefore, the application indicates the message length at the
beginning of each message, so that the receiver, which may
read partial or multiple messages at once from the bytestream,
can reconstruct the original messages. Second, in-order
bytestream abstraction causes head-of-line blocking (HoLB).
It is not only triggered by packet loss or retransmission, but
also on a CPU core. Since the host network stack parallelizes
ingress and egress processing across the cores in a flow 5-
tuple granularity to avoid packet reordering in a connection,
a small message needs to wait for a preceding large one
processed on the same core.

The application could increase message concurrency over
parallel connections, but a large number of connections
stress both the transport layer (e.g., cache pollution with
connection metadata [32, 42, 6]) and application (e.g., per-
socket syscalls [94, 63]). Also, parallel connections do not
solve HoLB at a CPU core, once the number of those exceeds
that of cores.

Despite those shortcomings, TCP is widely used in
datacenters as a convenient reliable, congestion-controlled
transport medium for RPC protocols, such as HTTP, gRPC
and Thrift, also benefiting from NIC offloading for segmen-
tation. TLS encryption is also common and thus all of those
RPC protocols support it. Furthermore, container clusters
often use encryption with mutual authentication (mTLS) to
interconnect services over the service mesh [14].

Therefore, encrypted datacenter transport protocols must
support RPC workloads efficiently. At the same time, it must
retain the offload capabilities currently available in TCP
and TLS, which is crucial for leaving sufficient CPU cycles
for applications or improving energy efficiency, and threat
model as existing encrypted communication. Support for
those properties could facilitate departure from TLS/TCP.

In this section we explore the design space of such a
transport protocol based on those requirements in either
literature or new experiments where it is unknown. Three
key observations that guide the design of SMT stand out:

• Existing encrypted transports fail to support hardware
offload or message-based abstraction (§ 2.1).

• Homa provides a middle ground as an unencrypted
message-based transport protocol for datacenters (§ 2.2).

• TLS offload available in commodity NICs can be general-
ized to new transport protocols (§ 2.3).

2.1. Transport-Level Encryption

Despite some momentum to integrate encryption into
a transport protocol, since existing approaches have been
designed for the Internet applications, they do not primarily
focus on host-stack software overheads or HoLB at a CPU
core, as reviewed from the top to the middle in Table 1 in
the rest of this subsection.

TcpCrypt [10, 11], designed for the Internet before the
wide adoption of TLS, extends TCP for connection authenti-
cation and data encryption. TcpCrypt encrypts TCP payload
with AEAD using the key exchanged during connection setup.
TcpCrypt is unsuitable for datacenters, because it inherits
the HoLB problems in TCP and its cryptographic operations
cannot be offloaded to commodity NICs.

QUIC is a transport protocol designed for the web. It
runs in userspace on top of UDP and integrates a custom
version of TLS 1.3 [92]. Although QUIC mitigates HoLB
on a packet loss using multiple streams in the connection, it
does not solve HoLB on a host CPU core due to connection-
level core affinity. In addition, its complex protocol design
incurs high software overheads [97, 88] and its cryptographic
operations cannot be offloaded to today’s commodity NICs.

TCPLS [77] provides similar features to QUIC, such as
multiple streams, but over TCP to traverse more middle-
boxes. It extends the TLS 1.3 record type to aggregate and
synchronize multiple TCP connections at the TLS endpoint.
In addition to the inherent HoLB problems in TCP-based
approaches ( § 2), TCPLS cannot utilize TLS offload due to
its custom method of calculating the AEAD nonce [67].

kTLS [46] accelerates TLS/(DC)TCP by offloading en-
cryption and decryption tasks to the kernel. It has been
used by Facebook for datacenter networking [36], Netflix
for video streaming [26] and Cisco/Cilium for network
observability [24, 12]. It enables opportunistic NIC offload
for cryptographic operations, along with segmentation offload.
kTLS inherits the HoLB problems from TCP.
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2.2. Message-Based Transport

Although existing transport-level encryption approaches
are unsuitable for datacenter RPCs, there exist several
attempts to enable message-based transport abstractions
mostly without encryption. However, we must consider HoLB
avoidance at both packet loss and CPU core, high-bandwidth
and low-latency datacenter networking requirements, and
generality. We review those attempts from the bottom to the
middle of Table 1 in the rest of this subsection.

Kernel Connection Multiplexer (KCM) [45, 36] provides
message-based abstractions through datagram socket APIs
(e.g., sendmsg/recvmsg) over TCP connections. However,
it incurs high CPU overheads for locating the framing headers
in the stream using an eBPF program supplied by the
application. It also leaves HoLB on packet loss or CPU
core unresolved.

Minion/µTCP [61] enables TCP bytestream self-
delimitation using consistent overhead byte stuffing (COBS)
with a single delimiter byte, slightly increasing the data
length. This allows the application to retrieve out-of-order,
yet meaningful data or messages from the kernel buffer using
a new socket API. µTCP mitigates HoLB caused by packet
losses, but not the one on a CPU core. It also incurs high
overheads to encode or decode the data with COBS.

SRD [82] is a transport implemented in a custom NIC.
While performing in-NIC multipath congestion control, it
delivers out-of-order packets to the software, which imple-
ments message abstraction. Falcon [84] and UET [16] are also
hardware-based transports, but unlike SRD, they implement
message abstraction, such as message-level reliability, in
hardware. Those transports mainly focus on GPU-based
HPC/AI workloads. For wider deployment scenarios, we
seek an approach that is compatible with commodity NICs
and can be used in bare metal or virtualized cloud instances
and networks that currently use TLS/TCP.

Homa [63, 59] is a receiver-driven transport protocol that
preserves message boundaries and mitigates HoLB on packet
losses via out-of-order message delivery. It also mitigates
HoLB on a CPU core using shortest remaining processing
time (SRPT) scheduling, dynamically distributing messages
across cores within the same flow 5-tuple instead of binding
them to a fixed core.

Figure 1 depicts the simplified packet format of Homa;
it also applies to MTP [43], another message-based transport
designed for in-network compute (§ 7). To support arbitrary-
sized, unordered messages, each packet contains message
ID, message length and message offset, so that the receiver
can reassemble the messages. Although Homa uses a new
protocol number, its packet overlays a TCP header to utilize
TCP Segmentation Offload (TSO), where a NIC splits a
large segment (called TSO segment) into MTU-sized packets.
Homa embeds the message ID in the TCP options space,
which is copied to all the packets by TSO. It prepends the
message offset to each packet payload, which is possible
because the boundaries of packets generated by TSO are
predictable. This is also necessary, as TSO does not write
sequence numbers for undefined transport protocols [59, 62].

We believe Homa is a practical basis for a message-based
transport protocol for datacenters in terms of abstraction
and packet format. Homa’s host stack could be adapted
to other message-based transports. For instance, NDP [33]
shares similar stack and protocol requirements, such as packet
scheduling for prioritizing specific data/control messages and
first-RTT data transfer. NDP packet types map naturally to
those of Homa: NACK in NDP and RESEND in Homa
both request retransmission, while their PULL and GRANT
request the next data. Also, Homa is well documented and
in active development for Linux upstreaming process [64].

2.3. Encryption Method

The choice of encryption method is crucial for designing
a viable encrypted datacenter transport protocol. Of particular
relevance is the deployment model and hardware offload.

IPSec provides host-to-host or site-to-site security as it
operates at the network layer configured by the operator
rather than the applications. This model thus differs from
TLS whose authenticated sessions are established between
individual applications. PSP [30], a more recent proposal
for dataceneters, also performs packet-based encryption but
in a more scalable way than IPSec, offering connection-
granularity security. However, PSP needs specific NICs
and it does not assume software-based encryption, because
TLS is faster in software [47]. We wish to support various
deployment models, much like the current TLS/TCP ones
where TLS encryption can be decided by the application and
its cryptographic operations can be optionally offloaded to
the NIC when the NIC is trusted.

Furthermore, IPSec and PSP approaches are incompatible
with confidential computing executed inside Trusted Execu-
tion Environment (TEE). TLS is used in such use cases [49,
91, 4]. Transport-level integration could be compatible with
them, so long as the protocol is implementable in user-space.

Therefore, TLS appears the best option for smooth
transition from TLS/TCP. However, a big question is whether
it can be used for new, non-TCP transport protocols, such as
Homa. We do not take this question just because Homa is a
native transport protocol, but we believe enabling encrypted
datacenter transport as a native transport makes emerging
protocol design and deployment flexible. Although attempts
have been made to repurpose the TCP protocol number
for a non-TCP protocol to use NIC TSO (e.g., STT [20]),
this approach would not gain widespread acceptance, as it
complicates operation of network management or monitoring
systems [5] and port number management in the host TCP
implementation.

The key aspect of assessing the feasibility of using TLS
with a new transport protocol is whether TLS offload in
commodity NICs can be used, because hardware offloading
is crucial for leaving as many CPU cycles as possible for
applications or improving energy efficiency. We believe
middleboxes in datacenters (e.g., load balancers) are more
evolvable than those in the Internet, because they are made
of software developed by the operator [23, 54] or service
provider closely working with cloud operators, whereas home
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gateways [35] and appliances in access networks [38, 22]
are hard to enforce upgrade. NIC offload is also crucial
to facilitate transition from TLS/TCP. If the operators or
applications have to give up the hardware offload currently
used for TLS/TCP, it would make the new transport slower
than TLS/TCP accelerated by the offload. This would create a
catch-22 situation, motivating no hardware vendor to support
the acceleration of the new transport protocol.

We review two existing cryptographic NIC offload archi-
tectures with experimental validation.

Chelsio T6 released in 2016 supports TLS offload but
strips TCP options provided by the stack, as it relies on the
TCP full offload engine (TOE). It is thus unsuitable for not
only new transport protocols but TCP extensions, a limitation
noted by Netflix, Microsoft, and others [68].

In contrast, NVIDIA ConnectX-6 DX (CX6) and -7
(CX7), released in 2020 and 2023, respectively, feature
a different hardware architecture, called autonomous of-
fload [68]. This architecture allows the transport protocol to
run in software, allowing it to evolve, while offloading data
processing in an application-level protocol like TLS. Linux
has supported this architecture, and its software interfaces and
hardware requirements for other vendors are documented [46].
These NICs are widely used today, with NVIDIA holding
the largest NIC market share for NICs supporting 25 Gb/s
and above (e.g., 65 % in 2019 [90]). The distinctive software
interfaces described in [46] allow us to infer the TLS offload
architecture of other NICs in their Linux drivers. Broadcom,
Microsoft/Fungible and Netronome NICs appear to support
this architecture, while Intel might not.

We tested CX6 and CX7 NICs by generating a TLS/TCP
TSO segment using kTLS. In the driver, we modified the
protocol number field in the IP header just before the packet
descriptor was linked to the hardware. We confirmed that
the resulting packets have correctly encrypted payload while
preserving the original TCP header structure with or without
TSO. This observation indicates feasibility of enabling a new
encrypted transport protocol that can benefit from existing
hardware acceleration.

3. SMT Design Challenges

SMT focuses on message-based socket abstractions where
the application sends multiple independent messages in
parallel and the receiver can process them in any order,
while ensuring reliable message delivery through packet re-
transmissions. SMT provides TLS-based security guarantees
for such an abstraction implemented by Homa [63], which
achieves datacenter-friendly properties of RPC efficiency,
host stack parallelism, and generality to extend to other
message-based datacenter transports (§ 2.2).

Achieving those datacenter transport properties while
adding security is challenging due to the TLS protocol
semantics and stack and NIC features.

3.1. TLS Protocol Semantics

TLS assumes in-order bytestream abstraction for the
underlying transport and guarantees the original order of the
records, rejecting out-of-order or duplicated records, which
would have been tampered or replayed but delivered by TCP
due to TCP-level correctness based on sequence number
and checksum. This means that simply stacking TLS over a
message-based transport like Homa is not viable, because
out-of-order message delivery to the TLS endpoint causes
record rejection, whereas performing a TLS handshake for
every message is impractical.

Stacking TLS over a message-based transport also pre-
cludes TSO performed together with TLS offload. Enabling
message-based abstractions with TSO requires that the
transport layer place framing headers in the middle of the
message (§ 2.2), whereas the NIC TLS offload cannot exclude
such “gaps” from encryption. If those framing headers were
encrypted, the transport protocol could not reassemble the
TLS records from packets.

3.2. Host Stack and NIC Features

Message-based transport (§ 2.2) could send multiple
independent messages in any order by the scheduler or
congestion control algorithm within the same flow 5 tuple.
This is a stark contrast to TCP, which serializes all the
transmissions, including retransmissions, to minimize packet
reordering. TCP transmits packets in the syscall (e.g., when
a new data is written by the application and the window is
available) or interrupt (softirq) context (e.g., when a received
ack packet triggers transmission of new data in the send
buffer), both of which are performed while locking the socket.

However, message-based transport would take message-
level locking without socket-level one for message-level par-
allelism within the stack, as done in Homa. Further, receiver-
driven transport protocols, such as NDP and Homa, run a
dedicated packet scheduler thread for fine-grained network
utilization. For example, Homa sends small messages directly
in the syscall context, but parts of large messages are pushed
by the scheduler. When the Homa sender receives a Grant
packet, in which the receiver grants the sender transmission
of new data, it sends data chunks in the softirq context.

Those stack features pose challenges in using TLS offload
in the NIC. Autonomous Offload (AO) (§ 2.3) maintains
a flow context backed by in-NIC memory, which stores
the encryption key and self-incrementing record sequence
number. Figure 2 illustrates how AO works. When the
software sends a segment that the NIC needs to encrypt
with a different record sequence number than its current
internal one, it must prepend a resync descriptor in the
queue (Figure 2 bottom) to adjust that internal one. TCP
uses this feature for retransmissions where the NIC sees the
previous record sequence numbers.

Message-based transports could send multiple messages
across different CPU cores, which push their packets to differ-
ent NIC queues. This makes enforcing the NIC to encrypt a
record with a specific or predictable record sequence number
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Figure 2: Encryption with autonomous offload [68]. Each
rectangle represents one TLS record that contains one or
more packets or TSO segments. The HW expects S2 after
S1 to produce a correct next encrypted segment (In-seq);
if S3 arrives, it generates a corrupted one (Out-seq.). A
resync descriptor (R3) changes the seqno that HW expects
to S3 (Out-resync). Note that each segment in the Wire
actually consists of multiple packets split by TSO.

hard. Prepending a resync descriptor to every segment (to
reset the sequence number expectation from another message)
does not solve the problem, because the NIC provides no
atomicity or ordering guarantee in reading the descriptors
across the queues. Consider two segments that belong to
different messages but to the same 5 tuple, S4 and S5 (not
illustrated). They are sent in parallel by different CPU cores
(e.g., scheduler and softirq) and thus to different NIC queues.
Although each segment prepends a resync descriptor (see
Figure 2), R4 or R5, it is not guaranteed that the descriptor
pair of resync and segment (e.g., R4 and S4) are read by
the NIC atomically; the NIC could read R4 after R5 then
read S5, resulting in incorrect encryption.

4. SMT Design

SMT addresses the aforementioned challenges by
transport-level encryption, where the transport protocol
embraces encryption based on TLS. This architecture enables
two key features of SMT: message format that can use
both TSO and TLS offload (§ 4.3) and the use of per-
message record sequence number space in the secure session
for unordered message delivery without costly per-message
handshake (§ 4.4). We provide detailed security analysis in
§ 6.

4.1. Threat Model

We assume the same threat model as TLS/TCP, protecting
endpoints from data breaches, packet injection, and replay
attacks. We assume the host subsystem that executes the
transport protocol— the OS kernel in our implementation—
is trusted. When the OS kernel cannot be trusted, SMT can be
implemented in user-space protected by a TEE environment—
using a trusted network stack like rkt-io [91]. While we also
assume the NIC is trusted, this assumption can be removed;
in such cases, TLS offload must be disabled so that the NIC
processes only encrypted packets.

4.2. Session Initiation

SMT initiates a secure session using the standard TLS 1.3
handshake performed by the application, because datacenter

src port dst port

unused

data offset type unused
checksum TSO offset

message ID

message length
TSO offset (cont.), Resend packet offset, etc.

Framing header (app data length)
TLS record header

0 15 31

framing header
app data

framing header
app data

IP header (proto != TCP)

TLS authentication tag

app data

Figure 3: SMT TSO segment with one TLS record being
split to 3 packets. Dark and light gray parts overlay TCP
common header and options space, respectively, and are
replicated over every packet by TSO. The NIC encrypts
the dashed area. TLS record header is actually 5 B and the
authentication tag is 16 B.

transport protocols, such as Homa and NDP, send an RPC
already on the first RTT without transport-level handshake.
A session is identified by the flow 5 tuple that consists of
source-destination address and ports plus protocol. Since
the handshake process is based on TLS 1.3, it can support
mutual authentication as with mTLS [15].

After the handshake, the application registers the ini-
tialization vectors and session keys negotiated over the
handshake to the SMT socket2. After that, a plaintext message
written to the socket is encrypted and sent by SMT. The
SMT receiver decrypts the message and the application reads
the plaintext one.

Although the session initiation takes one RTT, the
application can reuse the same shared key over multiple,
concurrent messages in the session for a while. Alternatively,
it can also be done over the first RTT SMT data at the
expense of forward secrecy of that data (not subsequent
ones), which we discuss in § 4.5.

4.3. Offload-Friendly Encrypted Message Format

SMT uses the TCP header structure with a new transport
protocol number indicated in the network layer header to
use TSO, like Homa [63]; we confirmed that it can also be
compatible with TLS offload in § 2.3. When the application
posts a message to an SMT socket, the question is how
to segment this message, which can span across multiple

2. Same as kTLS: https://docs.kernel.org/networking/tls.html.
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TSO segments or TLS records, into packets while applying
encryption, possibly by the NIC. It must be done such that
the receiver can reassemble the original message from them.
This is not a concern for TLS over TCP, because, when a TLS
receiver sees a series of records, they are already in-order
based on the underlying bytestream abstraction. However,
message-based transports with TSO and TLS offload place
unusual demands, as discussed next.

SMT segments an application message in two stages—to
TSO segments (§ 2.2) and packets. The receiver reassembles
the message in the reverse order. SMT creates TLS records,
each of which is preceded by a record header and is at
most 16 K B in size, to align with the boundaries of the TSO
segments, which are at most 65 K B. When the NIC does
not support TLS offload, the records are encrypted by the
CPU at this stage.

Each TSO segment has TSO offset, which indicates its
position within the message. Since SMT embeds it in the
overlayed TCP header, which is copied to all the packets
by TSO, all the packets that have been generated from the
same TSO segment have the same TSO offset value. SMT
needs packet offsets for the receiver to reassemble the TSO
segment from the packets. We use the IPID in the network
header because it is incremented over the packets generated
by TSO. If the NIC generates TCP sequence numbers for
non-TCP packets when performing TSO, we could use that,
as it also works for IPv6.

As a simple example, Figure 3 illustrates a message that
consists of one TSO segment and TLS record splits into
three packets.

The receiver first reassembles a TSO segment based on
the packet offsets in the tuple of TSO offset and message
ID. It then decrypts the TLS records and reassembles the
message based on the TSO offset values.

We must handle two cases of retransmissions: actual
packet loss and spurious retransmission, which must be
ignored by the receiver. Retransmission of a packet needs
to have the original packet offset within the segment, we
embed that value in the unused space of the overlayed TCP
header (Resend packet offset in Figure 3, plaintext area).

Note that the use of framing headers is based on our
current implementation. We could remove it, because the
receiver can reassemble the TSO segments using solely
packet offsets. This would improve performance of large
messages because of simpler buffer operations.

4.4. Per-Message Record Sequence Number Space

To avoid costly handshake performed for every message
or record rejection caused by out-of-order message delivery
(§ 3.1), SMT uses per-message record sequence number
space within the TLS session. Each record sequence number
space offers the order-preserving guarantee of TLS on top of
reliable message delivery of message-based transports like
Homa and NDP. The record sequence number monotoni-
cally increments in the message like regular TLS. Record
sequence number spaces are mapped to the message IDs.
When the receiver sees the first packet that belongs to an

unseen message ID, it initializes the next in-sequence record
sequence number.

However, this parallelism introduces challenges for TLS
which is designed for TCP abstraction. TLS requires a unique
record sequence number for each record in one handshake
to prevent replay attacks. However, using multiple (i.e., per-
message) record sequence number spaces itself means that the
receiver may see the same record sequence number between
the messages.

4.4.1. Message Uniqueness Guarantee. Transport-level
encryption, instead of stacking TLS on a non-encrypted
transport protocol, enables solving this issue. SMT introduces
a composite 64-bit record sequence number that integrates a
message ID whose uniqueness is guaranteed throughout the
secure session with an intra-message record index.

To comply with TLS, TLS record sequence number with
fixed 64 bits length is the only free variable available to
encode both message ID and intra-message record index. We
dedicate a portion of these bits to message IDs and assign the
remaining bits to indexes of the records within the message
(intra-message record index) as illustrated in Figure 4, It
requires bit allocation trade-off between maximum message
sizes and the number of unique message IDs. Since the
maximum record size is 16 K B, supporting larger maximum
message sizes needs more bits for the record indexes;
supporting more messages needs more bits for the message
IDs. Figure 5 plots this trade-off.

In our current implementation, we opt for 48-bit message
IDs. This leaves 16 bits for the intra-message record index.
This allocation allows a single message to accommodate up to
65K individual TLS records, supporting message sizes up to
approximately 98 MB even with 1.5 K B (small) TLS records,
and approximately 1 GB with 16 K B one (maximum record
size). For reference, the default maximum message size of
Homa is 1 MB. Each endpoint can use different message
ID length as long as the receiver endpoint knows what the
sender uses. That could be negotiated during the handshake.
Revealing the message ID length to an eavesdropper does
not increase the security risk.

The composition itself introduces very little performance
overhead, because the intra-message record index occupies
the lower bits, allowing the hardware’s self-incrementing
counter to operate correctly just like TLS/TCP.

4.4.2. TLS Hardware Offload. Per-message record se-
quence number spaces enable the use of AO-based TLS
offload, avoiding the problem with non-atomic reads between
the descriptors across the queues (§ 3.2), because the
messages in the same 5 tuple do not have to share the
flow context, which dictates in-sequence record sequence
numbers, across the queues. This approach also enables
efficient use of in-NIC memory, because it allows a flow
context to be reused by another message in the same session
(i.e., record sequence number space) simply performing a
resync operation. This is not the case when switching the
keys (e.g., with another handshake); it requires allocation of
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Figure 5: Trade-off between maximum message size and
number of unique message IDs based on bit allocation in
the 64-bit composite record sequence number.

a new flow context, which is more expensive than resyncing
existing one.

Although the NIC can maintain millions of active flow
contexts in its memory and packet transmissions effectively
hide the cache evictions and admissions [68, 69], it cannot
maintain an unlimited number of them. Therefore, taking
the advantage of efficient reuse of the context, we design a
flexible trade-off between parallelism and in-NIC memory
usage. We create flow contexts for each message until a
certain threshold, at least one per NIC queue. Messages
that go to the same queue in the same flow 5 tuple may
share the same context, but those sent to different queues
do not. However, even when sharing the context, since they
are serialized in the queue, a resync operation guarantees
its target segment or record. Note that the segments that
constitute the same message always go to the same queue,
because the message-based transport could ensure in-order
delivery within the message to avoid packet-level reordering.

Our current implementation allocates one flow context
per queue for each flow 5 tuple, but we may revise this in
the future or for other NICs.

4.5. Key Exchange and 0-RTT Data

Efficient key exchange is essential for cloud applications
to initiate data transfer with minimal latency. While TLS
1.3, the default key exchange method for SMT, supports
fast resumption and SMT can send multiple messages in the
same session (§ 4.2), its effectiveness decreases in dynamic
communication patterns where endpoint churn limits session
reuse. To understand the overhead of key exchange, we take
the latency breakdown of the TLS 1.3 initial handshake by
timestamping the picotls library (Table 2). To accelerate
key exchange, we first introduce three techniques that help
reduce handshake latency (§ 4.5.1). We then show how to
eliminate 1-RTT by pre-distributing long-term public key
shares to internal DNS resolvers in the datacenter (§ 4.5.2).

4.5.1. Key Management and Authentication.
Key pre-generation. To reduce costs in S2.1 and C1.1,
servers and clients could maintain a list of standby key
pairs created prior to a handshake [96]. This is feasible in
datacenters that centralize administrative control such that a
choice of security parameters is made upfront.
ECDSA authentication. ECDSA significantly reduces hand-
shake latency—by hundreds of µs in S2.5, C4.1, and
C4.2—particularly in mutual authentication, where the server
performs one Sign and two Verify operations.
Short certificate chain. To reduce latency in C3.2, we could
use a short certificate chain and configure all endpoints with
the CA’s verification key, avoiding certificate lookup and
long-chain validation. This speeds up the Verify Cert opera-
tion by approximately 52 % in our tests. Since an internal
CA manages certificates within the datacenter, backward
compatibility features can also be omitted.

4.5.2. 0-RTT Data and Key Exchange. Datacenter transport
protocols, such as Homa and NDP, send an RPC already on
the first RTT without transport-level handshake. 0-RTT data
could be achieved by extending the TLS 1.3 key exchange
with DNS-based distribution of a server’s long-term Diffie-
Hellman (DH) public key. This approach, inspired by TLS
Encrypted Client Hello (ECH) [76], removes one RTT from
the initial handshake.

In our design, the client first performs a DNS query to
retrieve SMT-ticket, which includes: (i) the server’s long-
term ECDH public key share, (ii) its certificate, and (iii)
a signature over the SMT-tickets signed by the certificate’s
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Server ID Operation Overhead (µs)

Handle CHLO S1 Process CHLO 1.8

Generate SHLO

S2.1 Key Gen 67.9
S2.2 ECDH Exchange 265.0
S2.3 SHLO Gen 75.2
S2.4 EE & Cert Encode 13.6
S2.5 CertVerify Gen 137.6∗ / 1344.0+

S2.6 Secret Derive 48.6
Handle Finished S3 Process Finished 44.4

Client

Generate CHLO
C1.1 Key Gen 61.3
C1.2 Others Gen 5.5

Handle SHLO
C2.1 Process SHLO 2.6
C2.2 ECDH Exchange 88.7
C2.3 Secret Derive 48.8

Verify Cert
C3.1 Decode Cert 0.1
C3.2 Verify Cert 483.4

Verify CertVerify
C4.1 Build Sign Data 1.4
C4.2 Verify CertVerify 196.3∗ / 67.1+

Handle Finished C5 Process Finished 42.6

Table 2: Server- and client-side TLS handshake overheads
(∗ with 256-bit ECDSA and + with 2048-bit RSA).

private key. Note that the datacenter or cloud provider could
operate its own root CA that also acts as the internal DNS
resolver. With trusted CA public key pre-installed across the
datacenter, the client can verify the SMT-ticket and send a
ClientHello with its ephemeral key. These steps can occur
before the handshake begins, as server information is often
known in advance.

Using the server’s long-term key and its own ephemeral
key, the client derives an SMT-key and immediately sends
encrypted application data. If forward secrecy is enabled, the
server replies with a ServerHello containing its ephemeral
key, enabling both sides to derive an fs-key and switch to
forward-secret encryption. If forward secrecy is disabled, the
SMT-key is used for all payload encryption for the duration
of the session.

We retain TLS 1.3’s session resumption mechanism,
which updates cryptographic keys and thus resets the message
ID space.

4.5.3. Forward Secrecy. The 0-RTT handshake trades
some forward secrecy for lower latency, as client 0-RTT
data is encrypted using the SMT-key, which lacks strong
forward secrecy. To mitigate the risk, we limit SMT-ticket
validity period. Following industry practice—such as Cloud-
flare’s hourly rotation of session ticket keys for 0-RTT
data [93]—we recommend a maximum lifetime of one hour.
To further reduce replay risk caused by SMT-key, servers
can record the CHLO random value, as specified in TLS
1.3 [75].

4.6. Implementation

The current SMT implementation3 consists of a 2800
LoC patch to the Homa/Linux kernel module and a 300 LoC
patch to the NVIDIA mlx5 driver, requiring only these two
kernel modules to be recompiled and reloaded.

Note that the device driver modification is to adjust the
offset to start the encryption specifically for TLS offload
and generalize flow context management that currently relies
on TCP sequence number and lacks sufficient flexibility of
allocation. We therefore believe its adoption once Homa is
upstreamed [64].

To implement the key exchange method in § 4.5, we
extend picotls with a new extension, to indicate the use
of SMT-ticket, reusing the pre_shared_key field to specify
its identity in the handshake.

5. Evaluation

We measure the performance of SMT in comparison to
TLS/TCP and other systems.
HW&OS. We use two identical machines connected back-to-
back. Each machine is equipped with two Intel Xeon Silver
4314 CPUs and NVIDIA/Mellanox ConnectX-7 100 Gb/s
NIC. They install Linux kernel 6.2. We use one NUMA
node, and separate cores for softirq contexts and application
threads. The network MTU size is 1.5 K B unless otherwise
stated. All experiments use AES-128-GCM (128-bit length
key) cipher for both SMT and TLS. We don’t use receive-side
offload for kTLS, because not only SMT does not support
it (§ 7), but it often impractical due to incompatibility with
tunnelling protocols or packet delivery delay when the NIC
waits for the complete record.
Performance metric. Our primary performance metric is
the protocol and encryption overhead added to the base
unencrypted variant (i.e., Homa), which we compare with that
of TLS over TCP. This makes our measurements worthwhile,
although Homa variants often do not perform better than the
TCP variants due to immaturity of Homa itself, because
those characteristics could still be valid even after the
Homa implementation evolves. Later in this section, we
also provide a snapshot of the performance of Homa and
TCP variants with other aspects of SMT evaluation, which
include application porting effort.

5.1. Unloaded RTT

We first measure RTT of a single RPC without concurrent
RPCs, using our custom application to highlight software
overheads of the network stack, including the transport
protocol, without the effect of queuing or application-level
processing delays. Figure 6 shows the results. We ran three
trials, 8 seconds each, and plot the middle one in average
latency; same for the next experiment.

SMT outperforms kTLS by 13–32 % with TLS offload
and 10–35 % without it. Since Homa is faster than TCP by

3. https://github.com/uoenoplab/smt.
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Figure 6: Unloaded RTTs of various sized RPCs. Standard
deviations are 2–12 %.

5–35 %, SMT does not diminish the advantage of Homa over
TCP. The margin is smallest with 65 K B RPCs, because the
Homa receiver waits for the arrival of the entire RPC (that
consists of multiple packets) before delivering (copying) data
to the application, whereas TCP overlaps packet reception
and application-data delivery due to its streaming abstraction.
This is not a fundamental limitation of Homa and there exists
work to remedy this issue [53, 65], and once it is merged
into Homa, we expect that Homa and SMT outperform TCP
variants by larger margins.

The benefit of hardware offloading is small (up to 7 %
in SMT) in this experiment. For small messages, this is
due to low encryption overheads and per-segment cost
incurred to populate offloading metadata (§ 3). For large
messages, the bottleneck is not encryption but data copy.
To confirm the similar characteristics of larger message, we
experimented with 500 K B RPCs (not plotted); it exhibited
little (1 %) latency benefit of hardware offloading. In the
next experiments where CPU cores are more loaded due
to concurrent RPCs (§ 5.2) or complex application-level
processing (§ 5.3), we observe a larger benefit of hardware
offloading.

5.2. Throughput

Next, we measure the performance of SMT in the
presence of concurrent RPCs and multiple application threads.
We generate concurrent RPCs using 12 threads allocated for
the applications and 4 threads for the stack at each of the
server and client. Recent report [81] shows 90 % of RPCs
in production are smaller than 10 K B. We thus evaluate
three representative sub-10 K B sizes—small, near-MTU, and
multi-MTUs.

Figure 7 shows the throughput over different numbers of
concurrent RPCs for three RPC sizes. For 64 B messages,

SMT exhibits higher throughput than kTLS by 16–40 % with
TLS offload and 16–40 % without it; those improvements
with 1 K B messages are 17–41 % and 16–39 %, respectively.

SMT exhibits lower throughput than kTLS with 8 K B
messages, by 5–15 % with TLS offload and 3–13 % without
it, because, as before, Homa is unoptimized yet for large
messages in comparison to TCP.

In SMT, advantage of HW is largest with 1KB cases (5–
11 %), because 8 K B cases (4–9 % improvement), throughput
are constrained by the lack of pipelining.

In 64 B RPCs with 50–100 concurrent requests, SMT
exhibits a slightly larger benefit of HW than kTLS/TCP due
to lower protocol overheads of the base transport (Homa)
than TCP (as seen in § 5.1) and thus higher relative crypto
overheads.
Impact of a larger MTU. We ran the same tests as Figure 7
right (50–150 concurrent 8KB RPCs) with 9 K B MTU
(thus one message fits into a single packet). Compared to
1.5 K B MTU cases, SMT exhibited 13–28% and 16–31%
higher throughput with and without TLS offload, respectively,
because of the reduced number of packets per message.
CPU usage. We tested CPU usage with the setting of Figure 7
middle, but limiting the RPC rate of all the systems to
1.2Mreq/s to measure the resource usage over the same
request rate. SMT-SW exhibited 3.5 % lower CPU usage
than kTLS-SW at the client and 10.5 % at the server. SMT-
HW exhibited 2 % lower CPU usage than kTLS-HW at the
client and 8 % at the server. SMT-HW reduced the CPU
usage of SMT-SW by 4 % at the server and 1.5 % at the
client. Our current implementation does not show memory
saving with hardware offload, because its software encryption
is done in-place.

5.3. Redis

What does using SMT in a real-world application look
like? We report our experience of adding support for SMT
in Redis, a widely used key-value store. The vast majority of
effort was supporting vanilla Homa; once it is done, support
for SMT was trivial because of transport-level encryption; it
simply adds setsockopt to register the key (§ 4). We thus
mainly discuss adding support for Homa in Redis.

Redis adopts a single-threaded design and monitors
clients using an epoll event loop; each client connects
to the server over a TCP connection and the connection
is reused over multiple requests. Since a Homa socket
can communicate with multiple clients, Redis/Homa could
directly block on recvmsg syscall. However, to share the
same database between both TCP and Homa clients, we
register the SMT socket (that handles all the SMT clients)
to the epoll socket. When a request arrives over TCP, the
Redis server reassembles messages by locating the Redis
headers in the bytestream; when that arrives over Homa, since
Homa preserves message boundaries, Redis/Homa does not
need to maintain the partial read offset.

Our modification in Redis is straightforward, because
Homa and SMT provide true file descriptors and the Redis
instance can monitor both TCP and SMT clients in the
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original epoll event loop. This is not the case for sup-
porting a kernel-bypass TCP stack as done in mTCP [60],
Demikernel [95] and Paste [37], which need to replace the
whole event loop, disallowing the clients to access the same
database over the regular kernel TCP stack. The same goes
for TCPLS; its I/O descriptors cannot be registered to the
OS-driven event loop.
Results. Figure 8 shows throughput measured by a YCSB [17,
74], which emulates real-world key-value store workloads.
We added support for Homa and SMT to it. Its default value
size is 1 K B, but to see the impact of sizes, we also test with
smaller (64 B) or larger (4 K B) values. To saturate the server,
we use multiple threads and cores at the client, each opens
its own socket to send requests to the server in parallel.

We compare SMT with or without TLS offload against
TCP and TLS/TCP. Redis uses user-space TLS that does not
support hardware offload, but we added support for kTLS
to make a fair comparison to SMT.

SMT outperforms Redis/TLS in all the workloads and
value sizes. SMT without TLS offload outperforms user-

space TLS by 5–24% and kTLS without offload by 8–22%.
When TLS offload is enabled, SMT outperforms kTLS by
5–18%. Recall that the throughput of Homa and SMT was
constrained to around 700 K RPCc/s by the softirq thread in
§ 5.2 (Figure 7). Since Redis has a considerable amount of
application-level processing overheads (e.g., request parsing
and database manipulation), the overall rates are below that
rate, and thus Homa and SMT always outperformed the TCP
counterparts.

In 64 B RPCs, since the application-level processing and
data encryption/transmission happen in the same thread that
becomes the bottleneck, CPU cycles freed up by encryption
offload directly improved performance, whereas at higher
request rates with SMT, the relative cost of the receive path
of the server’s stack became higher and thus we saw a smaller
benefit of encryption offload.

TCP (without TLS) performs slightly better than Homa
with 4 K B items, because it is optimized for large transfers.
However, SMT, even without TLS offload, always outper-
forms TLS. Similar to 8 K B RPC cases in Figure 7, this
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Figure 9: P50 and P99 latency of NVMe-oF.

highlights the better processing locality achieved by transport-
level integration of cryptographic operations.

5.4. In-Kernel Client: NVMe-oF

To show the applicability of SMT to in-kernel appli-
cations, we added experimental support for it in NVMe-
oF. NVMe-oF is a remote block storage service to connect
fast NVMe-based SSD devices and network clients. It is
implemented in the kernel to avoid moving the data between
the user and kernel spaces. If the NVMe-OF stack was
implemented in user space, to handle a read request, the data
needs to be moved out of the kernel block layer and then
moving the data back into the kernel to send it over TCP.

Similar to Redis, the most effort was about supporting
Homa, and once it was done, SMT support was trivial. It
was slightly harder than Redis due to the lack of Homa APIs
for kernel clients, which we thus implemented. We needed
to modify the NVMe-oF layer, because it expects stream
abstraction of the network I/O, whereas SMT inherits Homa’s
RPC abstraction. Since the NVMe stack is implemented
inside the Linux kernel block layer, we can use unmodified
client applications on top of it.

Our current implementation is in early stage and still
expensive, including one extra data copy compared to TCP
and lack of support for multiple I/O queues.
Results. We use FIO [7], a widely-used storage benchmark
tool, to generate random read requests to the remote SSD
node over TCP, kTLS, Homa or SMT. We use the default
NVMe block size, 4 K B, and force the data to be read from
the NVMe SSD, not from the page cache.

Figure 9 plots the P50 and P99 request latency over
varying iodepth, the number of requests sent without waiting
for the response to the previous requests. We ran each
iodepth 5 times, 30 seconds each, and plot the middle one
in P50 latency. Although we were not able to observe the
advantage of Homa or SMT when iodepth is 1–4 at P50 or
1–2 at P99, we saw up to 7 % (with TLS offload) or 15 %
(without it) of P50 latency reduction, and up to 16 % (with
TLS offload) or 21 % (without it) of P99 latency reduction.

Unlike Redis cases, we were not able to observe clear
advantage of hardware TLS offloading, likely because the
benefit was masked by other NVMe device or stack overheads

that increase the end-to-end latency. We leave further analysis
and improvement of NVMe-oF/SMT as future work.

5.5. Comparison with TCPLS (and QUIC)

TCPLS [77] augments TCP by extending TLS 1.3 to
achieve the similar features to QUIC (§ 2.1). We compare
SMT with TCPLS, because it outperforms all the QUIC
implementations they tested, including Quicly (the fastest
one), Msquic and mvfst, by at least 2.4× [77]. Figure 10
plots unloaded latency to highlight software overheads. SMT
without TLS offload exhibits 5–18 % lower latency than
TCPLS. SMT with TLS offload achieves 12–18 % lower
latency than TCPLS (cannot use offload, see § 2.1).

5.6. Key Exchange Performance

We implemented handshake methods that support 0-
RTT data with and without forward secrecy (§ 4.5). Fig-
ure 12 shows the RTT of the initial handshake and session
resumption for each method, compared to the baseline,
which performs a standard TLS 1.3 handshake over Homa
(without pre-key generation). We use ECDH key exchange
with secp256r1, the aes128gcmsha256 cipher suite, and
ECDSA with the secp256r1 signature algorithm.

The SMT initial handshake outperforms standard TLS
(Init-1RTT) by 37–44% when forward secrecy is enabled
(Init-FS), otherwise (Init) 52–55 %. In addition to RTT saving,
it eliminates C1.1 in Table 2 through key pre-generation, and
C3.1 and C3.2 by verifying the certificate from SMT-ticket
in advance on the client side. On the server side, it removes
S2.1 by using a pre-generated ephemeral key share.

For resumption (denoted as Rsmp), our implementation
also uses pre-generated keys at both ends. The margin
between Rsmp-FS and Rsmp (no forward secrecy) is 338–
387µs; it is reasonable, because the additional costs of S2.2
and C2.2 are similar.

6. Security Analysis

Security properties of SMT are based on TLS 1.3 [75].
This section first details how those properties are achieved
in SMT design in § 6.1. We then discuss attacks outside
the explicit defense scope of TLS 1.3 in § 6.2. Finally,
we compare SMT with other TLS-based transport-level
encryptions in terms of security properties in § 6.3.

6.1. TLS Security Properties

RFC8446 [75], which describes the TLS 1.3 specifica-
tion, defines the following security properties in Section 1:
authentication, confidentiality, and integrity. SMT ensures
the authentication properties using TLS 1.3 handshake and
thus inherits protection against attacks that affected earlier
TLS versions (e.g., POODLE [58], BEAST [21], and Lucky
13 [2]). SMT ensures confidentiality and integrity using
AEAD encryption, which provides both the properties.
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RFC8446 defines additional guarantees that enhance
confidentiality and integrity properties of TLS 1.3 in Section
E.2: order protection, non-replayability, length concealment,
and forward secrecy after key change. Since SMT needs to
ensure some of those guarantees or mechanisms differently
than TLS/TCP to support message-based transport, we
discuss those in detail.
Order protection. This property ensures the attacker cannot
make the receiver accept the out-of-order record sequence
number. In TLS/TCP, the (single) byte stream in the con-
nection is mapped to the TLS session with a single record
sequence number space. Therefore, out-of-order data does
not reach the TLS layer and the ordering guarantee of TLS
prevents the altered TLS records that preserve the TCP-level
correctness (i.e., sequence number, length and checksum)
from being accepted at the TLS layer. To support the message
abstraction that ensures reliable, in-order byte delivery within
the message but different messages can be reordered, SMT
applies the order protection in a per-message basis using per-
message record sequence number space in a secure session
(§ 4). Within the record sequence number space, the order
and completeness of records are guaranteed by monotonically
incrementing record sequence numbers, like TLS/TCP.
Non-replayability. SMT ensures this guarantee by composite
message identities (§ 4.4). Per-message record sequence
number space means the relative record sequence number can
duplicate across the messages in the TLS session. To avoid
replay, SMT ensures uniqueness of message ID throughout
the session (§ 4.4.1). When the receiver detects the message
ID already seen previously, it simply discards it without
decryption, much like TCP discards the packet with the past
sequence number. When the receiver receives a new message
ID but with altered payload, it detects replay or injection
when decrypting it, much like TLS receiver does so after
receiving an altered segment but correct at the TCP layer
(i.e., sequence number, length and checksum are correct).
Length concealment. TLS applications can conceal the
true length of the application data to protect form side-
channel attacks (although AEAD is safe without size chang-
ing in terms of confidentiality). SMT is compatible with
TLS padding. Each record can include padding as regular
TLS/TCP. When padding is used, the message length field
(Figure 3) should include padding length to be aligned with
the purpose of padding (i.e., hiding the true data length

from the plaintext metadata); the mismatch between the true
application message size and what the header indicate is not
a problem, because the receiver can identify the padding
length at the time of decryption (TLS records are reassembled
based on packet IDs and TSO offsets, which happens prior
to message-level reassembly (§ 4.3).
Forward secrecy after key exchange. This guarantee
protects the user data from the leakage of server’s private
key. SMT ensures this guarantee by ephemeral (EC)DHE
key exchange enforced by the TLS 1.3 handshake, except
for the (optional) 0-RTT data discussed in § 4.5.

6.2. Metadata and Traffic Analysis Considerations

As noted in RFC8446, TLS 1.3 does not provide specific
guarantees for traffic analysis attacks, although it provides
a mechanism to conceal application data length through
padding (see § 6.1). However, it is known that traffic
metadata, such as packet timing, sizes, rate and bursts,
could reveal meaning information from encrypted traffic,
such as (candidate) identifies of website [44, 86] and video
streaming [34, 50], often using ML-based methods [85, 9].
TLS 1.3 also does not provide defense to side-channel attacks
caused by microarchitectural effects.

SMT also does not provide protection against those at-
tacks except for the message length concealment mechanism.
A notable metadata that could be exploited by traffic analysis
is plaintext message ID and length field (Figure 3), which
could be more meaningful compared to the sequence number
field in TCP headers. However, if necessary, that can be
obfuscated using TLS 1.3 padding, as discussed in § 6.1.

It is reported that plaintext TLS 1.3 record header could
leak some degree of information to “weak” attackers [25].
The relevant concern is that TLS record headers are more
easily identifiable when aligned with packet boundaries. In
TCP, when multiple messages together form TCP segments,
the positions of the record headers are unlikely to align
with the beginning of the packet payload, except for the
first one. SMT currently places TLS record headers aligned
with message boundaries (§ 4.3), which would ease the
eavesdropper to identify their positions. Nevertheless, we do
not believe the impact of this alignment is particularly high
in comparison to TLS/TCP, because TCP applications would
use TCP_NODELAY anyways, which reduces opportunities of
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the aforementioned record boundary obfuscation. We leave
the analysis of effectiveness of traffic analysis attacks on
SMT traffic as future work.

6.3. Other TLS-Based Encryptions

It is worthwhile to discuss how other TLS-based protocols
guarantee the TLS 1.3 security properties, particularly for
those that SMT guarantees differently from TLS/TCP. DTLS
runs on UDP so it is impractical to assume that the underlying
transport results in in-order, complete delivery beyond a
single UDP datagram boundary. For the non-replayability
guarantee, the DTLS receiver maintains a sliding window
that defines the range of acceptable record sequence numbers
and tracks those already received. This enables the receiver to
uniquely identify valid records and discard any that either fall
outside the window or are detected as replays. SMT doesn’t
use the sliding window, because Homa provides reliable,
ordered byte delivery (like TCP) within the message. This
allows each record sequence number space to assume the
same underlying transport property as TCP.

QUIC does not use a record sequence number mechanism;
per-stream ordering is handled above encryption. Replay
protection is provided by a monotonically increasing packet
number incorporated into the AEAD nonce. Receivers track
processed packet numbers to discard duplicates. Unlike
TLS/TCP, QUIC accepts higher packet numbers even if
earlier ones are missing, tolerating reordering. Therefore,
QUIC’s encryption mechanism, as shown in Figure 4, can
be seen as per-packet record sequence number space in
contrast to per-message one in SMT and per-connection one
in TLS/TCP.

Note that header protection encrypts the packet number
to prevent middlebox interference and ossification, not as a
replay defense. Unlike QUIC, SMT does not enforce header
protection, because middlebox ossification is less relevant in
datacenters. This design preserves the property of message-
based transports that enables per-message load balancing
between the host stack CPU cores or multiple paths (§ 7)

7. Discussion

Message integrity. When TSO is used for a non-TCP
protocol, the NIC does not embed a checksum in the
overlaid TCP header field, meaning that checksum offload
is impossible. Because of this, Homa does not guarantee
message integrity. This means that the application must
compute the checksum and embed it in their messages.

SMT intrinsically obviates this problem, because encrypt-
ing and decrypting the message with TLS ensures integrity
is verified. Moreover, the cryptographic operations can be
offloaded to the NIC hardware.
Segmentation. IPv6 does not have an equivalent field to
the IPv4 IPID, which we currently use for reassembling the
TSO segment (§ 4.3). We can still use TLS offload without
TSO, which we plot the impact in Figure 11. Note that the
penalty of disabling TSO in SMT or Homa would not be as
large as in TCP cases. This is because, although TSO does

both segmentation and checksumming, Homa does not use
the latter or guarantee message integrity (SMT intrinsically
does it based on message encryption and decryption).

We can use TSO for every pair of packets, as the receiver
can reassemble them based on the presence of the TLS record
header. For larger TSO segments, we use GSO to split them
into two-packet-sized TSO segments at the bottom of the
stack. These smaller TSO segments contain incrementing
TSO offsets generated by GSO (Figure 3). If the NIC vendor
activates sequence number embedding to non-TCP packets,
which could not require significant changes to the NIC
implementation, SMT will enable full TSO.
Receive-side offload. Receiver-side cryptographic NIC of-
fload is challenging because the NIC does not route incoming
non-TCP packets through its cryptographic engine, although
it would be a straightforward task for the vendor to im-
plement. For example, Pensando Elba features a P4-based
ingress packet processing engine [8] situated before the
cryptographic engine. Although we confirmed that sender-
side offload accelerates RPC throughput by up to 5–13 %,
receive-side offload would further accelerate it.
Encryption protocol. SMT would support PSP used in
Falcon (§ 2.1) in addition to TLS, but the challenges of
encrypting message-based transport protocols discussed in
this paper remain valid unless the NIC explicitly supports the
SMT packet format. This is because encryption would occur
per TSO segment, which includes framing headers, while
PSP uses a single encryption offset. We plan to explore using
PSP instead of TLS once a NIC with PSP offload becomes
available.
In-network compute compatibility. SMT is compatible
with In-Network Compute (INC) enabled by MTP [43],
unlike other encrypted transports discussed in § 2.1. This is
because it leaves message ID and length unencrypted and
thus allows a network node to identify message boundaries of
application-level messages with bounded resource usage, for
example, for congestion signalling or load balancing. SMT
is compatible with packet trimming used by NDP [33] and
UET [16], because trimmed packets carry useful information
(i.e., plaintext transport metadata) for the receiver to identify
the sender demands.
Hardware-based transport. SMT is designed to be used
as replacement of TLS/TCP in ordinary cloud environments
that provide virtualized or baremetal instances or networks,
allowing opportunistic use of NIC offload for segmentation
and encryption. If implemented entirely in hardware like
Falcon/PSP, SMT would achieve lower small RPC latency
due to end-to-end SRPT scheduling inherited from Homa;
SMT has some communication overheads for compatibility
with existing offload, like TCP-structured header, whereas
Falcon/PSP avoids those overheads with clean-slate packet
format supported by the custom NIC.
Post-quantum resistance. SMT inherits post-quantum re-
sistance of TLS 1.3 using an appropriate handshake that
prevents captured handshakes from being attacked. The user
may opt for longer keys for slightly better quantum resistance.
In this case, the benefit of hardware offload would be larger.

13



Although we used 128-bit key in this paper (§ 5), the NIC
we used also supports 256-bit keys for TLS offload.

8. Related Work

Much of the related work has been discussed in § 2; the
remaining topics are covered here.
RDMA network security. ReDMArK [78] demonstrates
packet injection attacks in RDMA networks, highlighting the
need for encryption, such as IPSec or sRDMA [89], which
mitigates these attacks by using symmetric cryptography and
embedding MAC in the RDMA header. sRDMA employs
symmetric cryptography for authentication and encryption,
and extends the RDMA packet header to embed MAC.
The application establishes RDMA connections (QPs) with
the agent in the local SmartNIC whose CPUs perform
authentication and encryption jobs, attaching or removing
outer headers. [83] proposes encrypting RDMA packets with
DTLS using hardware acceleration, but SMT does not opt
for DTLS, because it needs TSO and large message support.
Key exchange acceleration. SSLShader [41] and Smart-
TLS [48] accelerate the TLS handshake using GPU and
SmartNIC, respectively. Those can be used for SMT if key
exchange is performed based on TLS, although we explored
lightweight methods based on symmetric keys (§ 4.5).
Host stack enhancements. Host stack improvements, such
as batching [32], zero copy [94], flexible core allocation [13]
and better NIC abstraction [79], complement SMT, though
TCP-specific optimizations like congestion control [3] and
handshake improvements [70] are not applicable. ByteDance
has reported their effort of improving Homa for their
RPC traffic [53], improving large send performance with
pipelining, congestion control with better RTT measurement,
loss detection, and buffer estimation to coexist with TCP
traffic. Those techniques are transparently applicable to SMT;
they report Homa’s throughput is lower than TCP when the
message size is larger than 50 K B, which we also observe
similarly in § 5.
Transport protocol design. It is worth discussing design
patterns of transport protocols. Multipath TCP [72] focuses
on robustness against middlebox interference prevalent in
the Internet [72]. Its compatibility with TSO also enables
datacenter usage for large transfers [71], although sharing
the problems with TCP for RPCs (§ 2.2). SCTP [87] defines
its own protocol number, which is viable in its primary
target, telecommunication networks, but has resulted in low
adoption in the Internet due to middlebox interference. It is
also not datacenter friendly due to high software overheads
and protocol complexity. SMT’s design point is support for
existing hardware offload and RPCs without consideration of
middleboxes that block transport protocols other than TCP
or UDP, which are prevalent in the Internet.
Transport multiplexing. Aquila [29] and EQDS [62] enable
sharing of the same network fabric for all host traffic,
including TCP and RDMA. EQDS operates as edge functions,
scheduling traffic over UDP using an NDP-derived control
loop, while Aquila uses a ToR-in-NIC (TiN) chip for
hardware-based transport (GNet). SMT can be multiplexed

within these systems, providing abstraction and encryption to
the application, and can also be used between edge functions.

9. Conclusion
We explored a new design point of secure datacenter

transport protocols to transition from the current TLS/TCP
ecosystem for more efficient secure datacenter networking.
We found that the TLS record protocol can be used with
new message-based transports designed for datacenter RPCs
together with existing TLS offload available in commodity
NICs, but doing so required tightly coupling transport
protocol and encryption to preserve the security properties
of TLS/TCP.

The current SMT implementation inherits performance
issues from Homa [53], but we expect those will be mitigated
due to its active development.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary of Paper

This paper addresses the lack of transport-level encryption
for modern datacenter transport protocols that use a message
abstraction. The authors propose SMT, which adds transport-
level encryption onto the Homa protocol, while remaining
compatible with TLS to take advantage of hardware offload-
ing available on commodity NICs.

A.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper addresses a long known issue. The authors
provide a solution for transport-level encryption in
datacenters that is feasible for adoption.

2) This paper proposes a valuable step forward in an
established field. The authors provide a solution for
transport-level encryption in message-based protocols
while enabling the ability to leverage hardware offload-
ing meant for stream-based protocols.
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