s Designing Transport-Level Encryption for Datacenter Networks
Tianyi Gao Xinshu Ma Suhas Narreddy
University of Edinburgh University of Edinburgh University of Edinburgh
Edinburgh, United Kingdom Edinburgh, United Kingdom Edinburgh, United Kingdom
tianyi.gao@ed.ac.uk x.ma@ed.ac.uk suryasuhas@gmail.com
Eugenio Luo Steven W. D. Chien Michio Honda
University of Edinburgh University of Edinburgh University of Edinburgh
Edinburgh, United Kingdom Edinburgh, United Kingdom Edinburgh, United Kingdom
eluo-1@sms.ed.ac.uk steven.chien@ed.ac.uk michio.honda@ed.ac.uk
Abstract We present a secure datacenter transport protocol (SDP). SDP’s

This paper presents SDP, a protocol design for emerging datacenter
transports, such as NDP and Homa, to integrate data encryption.
SDP enables a new design point of transport-level encryption that
supports an existing NIC offloading designed for TLS over TCP,
native transport protocol number alongside TCP and UDP, and
message-based abstraction that enables low latency RPCs, various
in-network compute, and host stack load balancing.

CCS Concepts

« Security and privacy — Security protocols; « Networks —
Transport protocols.

ACM Reference Format:

Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien,
and Michio Honda. 2025. Designing Transport-Level Encryption for Data-
center Networks. In 9th Asia-Pacific Workshop on Networking (APNET 2025),
August 07-08, 2025, Shang Hai, China. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3735358.3735389

1 Introduction

Datacenter transport protocols, pioneered by DCTCP [4], have
evolved over the last decade to achieve high throughput for bulk
data transfer while maintaining low latency for small messages. The
latest ones, including NDP [14] and Homa [21], are not extensions
to TCP—they are message-based and often receiver-driven, which
enable fine-grained network utilization.

However, what if the applications want data encryption to isolate
themselves from other tenants and protect themselves from network
infrastructure? Many cloud operators host multiple tenants [12].
Furthermore, even hyperscalers do not build every datacenter com-
ponent on their own; they source many, such as switches, cables,
and interface modules, from external vendors, which could be later
found vulnerable or malicious. It is thus common for datacenter
applications or tenants to seek encryption for their network data,
just as they would over the Internet [33].

This work is licensed under a Creative Commons Attribution International
4.0 License.

APNET 2025, Shang Hai, China

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1401-6/25/08
https://doi.org/10.1145/3735358.3735389

design goal is to meet general datacenter transport requirements

while assuming the same threat model with TLS/TCP, which is to

protect the endpoints from data breach, packet injection, and replay
attacks. We assume the host subsystem that executes the transport
protocol, which is the OS kernel for our implementation, is trusted.

Adding encryption to datacenter transport is challenging, be-
cause it may sacrifice properties specifically required by datacenter
transports. SDP preserves three properties crucial to protocol de-
signers and datacenter operators. The first is message-based trans-
port support that is essential to avoid head-of-line blocking (HoLB)
and to utilize in-network compute (INC), which requires the net-
work to identify boundaries of application-level messages [35]. The
second is compatibility with existing hardware offload, particu-
larly for cryptographic operations. Although hardware-based trans-
ports with custom NICs have been introduced by hyperscalers [34],
smaller operators would perfer a protocol that is open and can
be accelerated by commodity NICs. Last but not least is the intro-
duction of a native transport protocol. Although deploying a new
transport protocol without UDP encapsulation in the Internet is
almost hopeless due to ossified middleboxes [18, 22], this is not the
case in datacenters. New protocols, alongside TCP and UDP, would
ease transport-specific network management and INC.

SDP supports unordered, arbitrary-length encrypted messages
over an authenticated session, but with plaintext message identi-
fiers and offsets in packets. This enables the network or the host
stack to perform message-granularity operations, such as load bal-
ancing. SDP uses TLS offload and segmentation offload available in
commodity NICs [25]. This means that SDP can be adopted without
compromising hardware offload currently used by TLS/DCTCP.
SDP enables message-level parallelism throughout the stack by
per-message TLS record sequence number space in the authenti-
cated session, yet guaranteeing the message uniqueness to protect
the applications from replay attacks. This paper makes two main
contributions:

(1) Identifying a design point for an encrypted message-based dat-
acenter transport protocol that is protocol-number-agnostic,
general for other datacenter transports like NDP, and compati-
ble with existing TLS offload.

(2) A proof-of-concept implementation of SDT that extends the
Linux kernel implementation of Homa [24]. It outperforms
TLS/TCP by up to 35% in latency and up to 17% in throughput.

142

https://orcid.org/0000-0002-4578-4211
https://orcid.org/0000-0003-1370-4608
https://orcid.org/0009-0002-5049-2261
https://orcid.org/0009-0002-1822-9519
https://orcid.org/0000-0001-6408-3333
https://orcid.org/0000-0003-1895-5318
https://doi.org/10.1145/3735358.3735389
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3735358.3735389
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735358.3735389&domain=pdf&date_stamp=2025-08-06

APNET 2025, August 07-08, 2025, Shang Hai, China

2 Design Space

Existing encrypted transports share problems with hardware offload
or abstraction (reviewed from the top to the middle in Table 1 in
§ 2.1). On the other hand, existing message-oriented transports
have performance issues or lack encryption (from the bottom to
the middle in the table in § 2.2).

2.1 Transport-Level Encryption

TepCrypt [5] was designed for Internet applications before the
wide adoption of TLS. It encrypts the TCP payload using the key ex-
changed over connection setup. TepCrypt is unsuitable for datacen-
ters due to its stream abstraction that does not preserve application
message boundaries and creates HoLB between messages [24, 35],
as discussed further in § 2.2. Additionally, its cryptographic opera-
tions cannot be offloaded to commodity NICs.

QUIC mitigates HoLB using independent streams over UDP.
However, its complex protocol design leads to high software over-
head [37], and its cryptographic operations cannot be offloaded
to commodity NICs. Further, its encrypted header fields, designed
to prevent protocol ossification caused by middleboxes [17], are
unsuitable for in-network compute [15, 31, 36, 40].

Accelerating TLS/(DC)TCP is more datacenter-friendly, as intro-
duced by Facebook [16]. It enables opportunistic use of NIC offload
for cryptographic operations, along with segmentation offload, by
placing TLS in the kernel (so called KTLS). Netflix employs kTLS to
handle their video streaming traffic [1], while Cisco/Cilium uses it
for their network observability service [6, 10]. Similar to TepCrypt,
KTLS/TCP causes HoLB in RPC workloads, as discussed in § 2.2.

Falcon [9] is a datacenter transport that provides RDMA ab-
stractions and encrypts the connection packets using the PSP UDP
encapsulation protocol. While it preserves message boundaries and
supports unordered packet delivery, it does not support unordered
message delivery (i.e., ordered bytes in each message that can span
across multiple packets). This is problematic for INC, as described
next. Besides, Falcon requires custom NICs or Intel IPU for loss
recovery and congestion control. Due to its abstraction and NIC
requirements, Falcon is not a suitable basis for encrypted datacenter
transport.

None of the encrypted transports mentioned above are compati-
ble with INC [35] due not to encryption, but to the lack of message-
boundary visibility to the network nodes. INC requires that net-
work nodes identify boundaries of application-level messages with
bounded resource usage, for example, for message-granularity load
balancing. Some INC applications, such as data mutation, require
the session key to be shared with the INC node, but these transports
cannot support such applications even with the shared key.

2.2 Message-Based Transport

Datacenter transports require message—based abstractions [16, 24,
36] for RPCs (request-response) and INC support [35]. RPCs are typ-
ically small (e.g., half of RPCs have median requests and responses
under 1530 B and 315 B, respectively [32]). TCP is unsuitable for
RPCs because it disregards message boundaries that the applica-
tion would have implied (e.g., separate write calls). Therefore, the
application must embed a framing header indicating the message
length before each message so that the receiver, which may read

143

Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, and Michio Honda

partial or multiple messages at once (e.g., a single read call) from
the bytestream, can correctly reconstruct the messages.

However, these serialized messages in the bytestream cause
HoLB. It is not only triggered by packet loss and retransmissions,
but also by a CPU hotspot. Since the host stack processes packets
that belong to the same 5-tuple on the same CPU core to avoid
packet reordering in a TCP connection, a small message could wait
for a preceding large one to be pushed to the network (egress) or de-
livered to the application (ingress). The application could increase
RPC concurrency using multiple TCP connections, but a large num-
ber of those incur high processing overhead in both the kernel (e.g.,
cache pollution from connection metadata [13, 19]) and application
(e.g., scanning many sockets [24, 42]). In addition, the concurrency
level is limited by the port number space or 65K per server port.

Message-based transport protocols address this space, as re-
viewed from the bottom to the middle of Table 1 in the rest of
this section, to establish the starting point for SDP design.

KCM [2, 16] provides message-based abstractions through data-
gram socket APIs over TCP connections. However, it incurs high
CPU overheads for locating the framing headers in the stream us-
ing application-supplied eBPF program and leaves HoLB on either
packet losses or CPU hotspots unresolved.

Minion/pTCP [22] enables the TCP bytestream to self-delimit
using consistent overhead byte stuffing (COBS) with a single de-
limiter byte, slightly increasing the data length. This allows the
application to retrieve out-of-order, yet meaningful data or mes-
sages from the kernel buffer using socket API extensions. Although
uTCP mitigates HoLB at the socket buffer, it comes at a significant
computational cost to encode or decode the data with COBS.

Amazon SRD [34] is a hardware-based transport implemented
in their custom NIC and provides RDMA-based abstraction. It elim-
inates priority flow control and employs packet spraying. Similar
to Falcon, SRD does not expose message-level structures to the
network, making INC infeasible.

Homa [21, 24] is a receiver-driven transport protocol that pre-
serves message boundaries and mitigates HoLB from packet loss
via message-granularity delivery. It also mitigate HoLB at a CPU
hotspot using shortest remaining processing time scheduling, dy-
namically distributing messages, even those in the same 5-tuple,
across the cores. Although Homa is a native transport protocol, its
packet overlays a TCP header to utilize TCP Segmentation Offload
(TSO), where the NIC splits a large segment (TSO segment) into
MTU-sized packets.

Fig. 1 shows a generalized packet format based on Homa and
MTP [36], which proposes a similar structure for INC. Packets
within the same message share the same ID and length (Homa
places these in the TCP Options space of the TSO segment, copied
to all packets), while each packet specifies its offset within the
message (Homa includes this in the framing header). The packet
length in the network layer header or an additional field (not shown)
can be used to compute the message portion length.

We believe Homa is a practical basis for a message-based trans-
port protocol for datacenters, in terms of abstraction and packet
format. Homa’s host stack can be easily adapted to other message-
based transports. For instance, NDP [14] shares similar stack and
protocol requirements, such as packet scheduling for prioritizing
specific data/control messages and first-RTT data transfer. NDP

Designing Transport-Level Encryption for Datacenter Networks

APNET 2025, August 07-08, 2025, Shang Hai, China

Encrypt. Abstract. NIC Wire Host In-net
offload proto. LB com.
TepCrypt[5] Inline Stream N TCP Conn. N Src port|Dst port
QUIC[18] TLS Stream N* UDP Conn. N *FPGA NIC attempt [41] Msg ID
TLS/TCP[25] TLS Stream Crypto+TSO TCP Conn. N Msg len
Falcon [9] PSP Ordered Crypto+TSO** UDP Conn. N *RDMA verbs **Custom NIC or Intel M f
conns.” IPU Sg 0
SDP TLS Msg. Crypto+TSO New Msg. Y* *With shared key for data muta- Payload
tion [35]

Homa[24]/NDP[14] Msg. TSO New Msg. Y
MTP[35] Msg. TSO UDP - Y Figure 1: Generalized message-based
SRD[34] Dgram. Full* Unknown - Y *Custom NIC transport packet format based on
KCM[2]/uTCP[22] Msg* TSO TCP Conn. Y* *high overheads MTP [36] and Homa [24]' Shaded parts

Table 1: Key properties of encrypted or message-based transports.

packet types map naturally to those of Homa: NACK in NDP and
RESEND in Homa both request retransmission, while their PULL
and GRANT request the next data. Furthermore, Homa is well doc-
umented and in active development.

2.3 Substrate for Offloading

We believe that, as long as the NIC offload requirement is met,
enabling encrypted datacenter transport as a native transport pro-
tocol makes emerging transport design and deployment easier in
datacenters. Although attempts have been made to repurpose the
TCP protocol number for NIC offloading (e.g., STT [8]), it remains
unclear whether this approach would gain widespread acceptance
or offer sufficient generality, as it could confuse middleboxes (e.g.,
load balancers and network observability), network management
or monitoring systems. To assess the feasibility of the new-protocol
approach, we review the cryptographic NIC offload architectures.

Chelsio T6 released in 2016 supports TLS offload but strips TCP
options provided by the stack, as it relies on the TCP full offload
engine (TOE). It is thus unsuitable for not only new transport pro-
tocols but TCP extensions, a limitation noted by Netflix, Microsoft,
and others [25].

In contrast, NVIDIA ConnectX-6 DX (CX6) and -7 (CX7), re-
leased in 2020 and 2023, respectively, feature a different hardware
architecture known as autonomous offload [25]. This architecture al-
lows the transport protocol to run in software, enabling it to evolve,
while offloading data processing in an application-level protocol
like TLS. Linux has acknowledged this architecture, and its soft-
ware interface and hardware requirements for other vendors are
documented [3]. These NICs are widely used today, with NVIDIA
holding the largest NIC market share for NICs supporting 25 Gb/s
and above (e.g., 65 % in 2019 [39]). Moreover, the distinctive soft-
ware interfaces described in [3] allow us to infer the TLS offload
architecture of other NICs based on their Linux drivers. Microsoft/-
Fungible and Netronome NICs appear to support this architecture,
while Intel and Broadcom do not.

We empirically confirmed that CX6 and CX7 NICs performs
TLS offload correctly when the network layer header does not
indicate TCP. This observation opens up the pathway to designing
a new encrypted transport protocol that can benefit from existing
hardware acceleration.

144

are identical between the packets that belong
to the same message.

3 SDP Design Challenges

SDP focuses on message-based socket abstractions where the appli-
cation sends multiple independent messages and the receiver can
receive those in any order, while enabling reliable message delivery
with retransmissions. SDP provides the security property over the
abstraction based on Homa [24], because it provides datacenter
friendly abstractions in terms of RPC and INC friendliness, host
stack parallelism and generality to extend to other message-based
datacenter transports (§ 2.2).

However, achieving those properties while adding security is
challenging, due to the message-based transport features that differ
from TCP and hardware features that assume TCP. Simply stacking
TLS over a message-based transport like Homa is not viable. First,
it precludes TLS offload, as enabling message-based abstractions
with TSO requires that the transport layer place framing headers
in the middle of the message (§ 2.2), whereas the NIC TLS offload
cannot exclude such “gaps” from encryption. Second, transport-
level integration of encryption is essential to prevent the application
from replay attacks; we need to integrate the message identifier
and TLS record sequence number management (§ 4.4).

Integrating encryption with a message-based transport is chal-
lenging due to the following stack or hardware features:
Unordered messages. Message-based transport (§ 2.2) means that
the transport layer can send multiple independent messages in any
order by the scheduler or congestion control algorithm even within
the same flow 5 tuple. This is a stark contrast to TCP, which serial-
izes all the transmissions, including retransmissions, to minimize
packet reordering. TCP transmits packets in the syscall context
(e.g., when a new data is written by the application and a sufficient
window is available) or interrupt (softirq) context (e.g., when a
received ack packet triggers transmission of new data in the send
buffer), both of which are performed while locking the socket.
Message-level locking. However, message-based transport would
take message-level locking without socket-level one for better
message-level parallelism within the stack and flexible schedul-
ing, as done in Homa. Further, receiver-driven transport protocols,
such as NDP and Homa, run a dedicated packet scheduler thread
that controls when the packet is dispatched to the network for
fine-grained network utilization. For example, Homa sends small
messages directly in the syscall context, but parts of large messages
are pushed by the scheduler. When the Homa sender receives a
Grant packet, in which the receiver grants the sender transmission

APNET 2025, August 07-08, 2025, Shang Hai, China

Stack Wire—9>
In-seq. DPlaintext
Out-seq. NiC CJencrypted
Out-resync | S3 || R3 || S1 | | S3 || S1 | m lCorrupted

Figure 2: Encryption with autonomous offload [25]. Each
rectangle represents one TLS record that contains one or more
packets or TSO segments. The HW expects S2 after S1 to produce a
correct next encrypted segment (In-seq); if S3 arrives, it generates
a corrupted one (Out-seq.). A resync descriptor (R3) changes the
seqno that HW expects to S3 (Out-resync).

of new data, it sends data chunks in the softirq context. Concurrency
between syscall, scheduler, and softirq poses challenges.
Autonomous offload. The NIC based on Autonomous Offload
(AO) maintains per-flow TLS contexts. Fig. 2 illustrates how AO
works. When the NIC sees a packet and its metadata indicates TLS
offload, it checks whether the packet is what it expects with the
context; if it is not, the NIC generates a wrong TLS record header
and authentication tag, leading to failure of decryption. When the
software needs to send a packet that the NIC does not expect, it
must put a resync descriptor before that packet in the queue (Fig. 2
bottom), to make the NIC expect that packet. In TCP, this feature
is used for retransmissions where the NIC could see the previous
record sequence numbers again.

4 SDP Design

Unlike TLS stacked on TCP, SDP embraces encryption based on
the TLS record protocol in the transport protocol. This enables
parallelism required by message-based transports (§ 4.3) while pre-
serving the security properties of TLS/TCP (§ 4.4) and the use of
existing TLS offload (§ 4.2 and § 4.5).

4.1 Session Initiation

SDP initiates a secure session using the standard TLS 1.3 handshake
performed by the application, because datacenter transport proto-
cols, such as Homa and NDP, send an RPC already on the first RTT
without transport-level handshake. A session is identified by the
source-destination 4 tuple.

After the handshake, the application registers the initialization
vectors, session keys and record sequence numbers negotiated over
the handshake to the SDP socket!. After that, a plaintext message
written to the socket is encrypted and sent by SDP. The SDP receiver
decrypts the message and the application reads the plaintext one.

Although the session initiation takes one RTT, the application
can reuse the same shared key over multiple, concurrent messages
in the session for a while.

4.2 Arbitrary-Sized Unordered Messages

SDP segments an application message in two stages—to TSO seg-
ments (§ 2.2) and packets. The receiver reassembles the packets in
the reverse order.

Same as kTLS: https://docs kernel.org/networking/tls.html.

145

Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, and Michio Honda

TLS/TCP SDP
message message
App L1 [
TLS Layer [E—
Transport Layer O 1™ 1 I I
NIC [I [w w o]
Wire A | v A Y e

= Transport header
[0 TLS record header/trailer

1] Transport header (framing)
Encrypted part

Figure 3: The send path of a single app message over TLS/TCP
and SDP. TLS/TCP literally stacks TLS over TCP, whereas SDP
integrates the TLS-based encryption inside the transport protocol.

15
IP header (proto != TCP)
src port | dst port

31
L

0
SN

unused

unused
TSO offset

data offset| type
checksum

message ID

message length
TSO offset (cont.), Resend packet ID, etc.
TLS record header
Framing header (packet offset etc)
app data
framing header
app data
framing header
app data
| TLS authentication tag |

Figure 4: SDP TSO segment with one TLS record being split to
3 packets. Dark and light gray parts overlay TCP common header
and options space, respectively, and are replicated over every packet
by TSO. The NIC encrypts the dashed area. TLS record header is
actually 13 B and the authentication tag is 16 B.

SDP creates TLS records, each of which is preceded by a record
header and is at most 16 KB in size, to align with the boundaries of
the TSO segments that are at most 65KB.

As a simple example, Fig. 3 right illustrates how a message that
consists of one TSO segment and TLS record splits into three pack-
ets, and Fig. 4 shows the detailed format of this segment. Each TSO
segment has TSO offset, which indicates the position of the segment
within the message. When the NIC does not support TLS offload,
the records are encrypted by the CPU at this stage. SDP packets
need IDs for the receiver to reassemble the TSO segment. We use
the IPID in the network header because it is incremented over the
packets generated by TSO.

The receiver first reassembles a TSO segment based on the packet
IDs and TSO offset-message ID tuple. It then decrypts the TLS

https://docs.kernel.org/networking/tls.html

Designing Transport-Level Encryption for Datacenter Networks

records and reassembles the application message using the TSO
offset in the TSO segments.

We must handle two cases of retransmissions: actual packet loss
and spurious retransmission, which must be ignored by the receiver.
Retransmission of a packet needs to have the original offset within
the segment, we embed that offset in the unused space of “TCP”
header (Resend packet ID in Fig. 4, plaintext area).

4.3 Message Parallelism

TLS records are boundary-preserved, but ordered based on sequence
numbers in the stream. This means that, if a transport sent multiple
messages in parallel in the same flow 5 tuple, which identifies the
TLS session, they could cause HoLB, because they must be serialized
into the sequence number space.

The single TLS record sequence number space is also problematic
with the hardware offload. Consider two TSO segments that belong
to different messages but to the same 5 tuple, S3 and S4. They are
sent in parallel by different CPU cores and thus to different NIC
queues. Although each segment prepends the resync descriptor (see
Fig. 2), say, R3 and R4, it is not guaranteed that the pair of the resync
and corresponding descriptors are read by the NIC atomically; the
NIC could read R3 after R4 then read S4, resulting in an inconsistent
authentication tag for S4.

SDP therefore uses per-message record sequence number space
within the TLS session. In other words, the record sequence number
increments within the message like regular TLS. Record sequence
number spaces are mapped to the message IDs. When the receiver
sees the first packet that belongs to an unseen message ID, it ini-
tializes the expecting sequence number with its record sequence
number.

4.4 Replay Attack Protection

Although per-message record sequence number space enables message-

level parallelism, this method alone enables replay attacks, where
an attacker injects a previously-seen message to the receiver and
the receiver accepts it (i.e., deliver to the application). In TLS/TCP,
replay attacks are prevented by the receiver never accepting the
duplicated TLS record sequence number.

SDP guarantees the exact-once semantics of messages with
transport-level encryption. It maintains message IDs such that the
same values are used only once in the lifetime of the secure session.
Our current implementation, inheriting from Homa, uses a 64-bit
identifier space.

4.5 TLS Hardware Offload

Per-message record sequence number space enables the use of NIC
offload based on AO for encryption. Parallel messages can go to
different queues without confusing the NIC’s expectation. We create
a flow context, which dictates the next TLS record to be seen, per
message basis. Note that the NIC can maintain millions of active
flow contexts and packet transmissions effectively hide the cache
evictions and admission [25, 26].

In the scenario used in § 4.3, since those segments are associated
with separate contexts, we do not have to manipulate the sequence
number that the hardware expects. TSO segments in the same

146

APNET 2025, August 07-08, 2025, Shang Hai, China

50
40
30+
20+
— 1041
g i
E 64 256 512 1024 2048 4096
300 HTCP M Homa
B KTLS-sw SDP-sw
200 B KTLS-hw SDP-hw
100

8192 16384 32768 65536
RPC size [Byte]

Figure 5: Unloaded RTTs of various sized RPCs. Standard
deviations are 2-12%.

message always go to the same queue, because they are serialized
based on message-level locking to avoid packet reordering (§ 3).

5 Evaluation

Implementation. Current SDP supports Linux kernel 6.2. It con-
sists of approximately 2800 and 300 LoC patches to Homa/Linux
and Nvidia m1x5 driver, respectively.

HW&OS. We use two identical machines connected back-to-back.
Each machine is equipped with two Xeon Silver 4314 CPUs and CX7
100 Gb/s NIC. Both machines enable Turbo Boost and disable Hyper-
threading. They run Linux kernel 6.2. We configure RX interrupts
to go to one CPU core based on Homa’s recommendation, because
Homa does its own load balancing without relying on RSS. All the
threads and softirqs run on the same NUMA node as the NIC. The
network MTU size is 1.5KB.

Unloaded RTT. We first measure RTT of a single RPC without con-
current RPCs, using our custom app to highlight software overheads
of the network stack, including the transport protocol, without the
effect of queuing or app-level processing delays. Fig. 5 shows the
results.

SDP outperforms kTLS by 13-32 % with TLS offload and 10-35 %

without it. Since Homa is faster than TCP by 5-35 %, SDP does not
diminish the advantage of Homa over TCP. The benefit of hardware
offloading is small (up to 7 % in SDP) in this experiment, because
CPU cores are idle; we see the benefit when those are loaded, as
seen in Redis.
Redis. We added support for SDP in Redis. Because of SDP’s native
socket API, we were able to just add the SDP socket alongside TCP
sockets that Redis monitors. This means that, the server instance
or database can be shared between TLS/TCP (or just TCP) clients
and SDP clients, which avoids disruption of existing operation.

Fig. 6 shows throughput over YCSB workloads?. The default
value size is 1 KB, but to see the impact of it, we also test with 64 B
and 4K B values. To saturate the server, we use multiple threads
and cores at the client, each opens its own socket to send requests
to the server in parallel.

2We used YCSB-C [28] and extended it to support Homa and SDP.

APNET 2025, August 07-08, 2025, Shang Hai, China

v

u mTCP mHoma
2160 mKTLS-sw =SDP-sw
o mKTLS-hw © SDP-hw
ﬁlZO

5 80

o

<

o

5 40

Ky

F 0

A C A C A C
Value size 4B 1KB 4KB

Figure 6: Redis throughput on YCSB A (Update-heavy) and C
(Read-only) workloads.

SDP outperforms kTLS® by 5-13 % with TLS offload and by 8-
17 % without it. Unlike the previous experiment, since Redis has
app-level processing overheads (e.g., request parsing and database
manipulation), we observed the improvement with TLS offload.
TCP (without TLS) performs slightly better than Homa with 4KB
values, but SDP always outperforms kTLS, highlighting the bet-
ter processing locality achieved by transport-level integration of
encryption.

6 Discussion

Transport-level integrity. When TSO is used for a non-TCP pro-
tocol, the NIC does not embed a checksum in the overlaid TCP
header field, meaning that checksum offload is impossible. Because
of this, Homa does not guarantee message integrity and thus the
application must compute the checksum and embed it in their mes-
sages. SDP intrinsically avoids this problem, because encrypting
and decrypting the message ensures integrity is verified. Moreover,
the cryptographic operations can be offloaded to the NIC hardware.
Encryption protocol. SDP would support PSP used in Falcon
(§ 2.1) in addition to TLS, but the challenges of encrypting message-
based transport protocols discussed in this paper remain valid un-
less the NIC explicitly supports the SDP packet format. This is
because encryption would occur per TSO segment, which includes
framing headers, while PSP uses a single encryption offset. We plan
to explore using PSP instead of TLS once a NIC with PSP offload
becomes available.

In-network compute compatibility. SDP supports INC enabled
by MTP [35], unlike other encrypted transports discussed in § 2.1,
because it allows the network to reconstruct application-level mes-
sages based on the plaintext message ID, TSO offset and message
length, much like what the SDP receiver does (§ 4.2). Data mutation
is also possible if the key is shared, because SDP has no dependen-
cies between the messages, or its TLS record never spans across
multiple messages. SDP is also compatible with packet trimming
used by NDP [14], which can be seen as INC, because it leaves
message ID and length unencrypted.

0-RTT data. Key exchange is critical for cloud applications to
initiate data transfer as quickly as possible. While the default op-
tion relies on the standard TLS handshake and reuses the same
shared key over a persistent source-destination 4- tuple (§ 4.1), a
faster key exchange mechanism would be beneficial as clients and
servers continuously join and leave. 0-RTT data, which sends an

3Native Redis uses user-space TLS that does not support TLS offload, but we added
support for KTLS for fair comparison to SDP.

147

Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, and Michio Honda

encrypted application message without prior handshake, could be
possible at the expense of forward secrecy. It would use a short-lived
server ECDH public key provided by the DNS server?. This could
be feasible, because unlike the Internet, the datacenter or cloud
provider often operate its own root CA that also acts as the internal
DNS resolver. The client and server can use the 0-RTT data and its
response to establish a forward-secure session.

7 Related work

We discuss the remaining topics not discussed in § 2 here.
RDMA network security. ReDMArK [30] demonstrates packet
injection attacks in RDMA networks, highlighting the need for
encryption, such as IPSec or sSRDMA [38], which mitigates these
attacks by using symmetric cryptography and embedding MAC in
the RDMA header.

Host stack enhancements. Host stack improvements, such as
batching [13], zero copy [42], and fine-grained core allocation [7],
complement SDP, though TCP-specific optimizations like conges-
tion control [4] and handshake improvements [27] are not applica-
ble. ByteDance has reported their effort of improving Homa for their
RPC traffic [20], improving large send performance with pipelining,
congestion control with better RTT measurement, loss detection,
and buffer estimation to coexist with TCP traffic. Those techniques
are directly applicable to SDP.

Transport multiplexing. Aquila [11] and EQDS [23] enable shar-
ing of the same network fabric for all host traffic, including TCP
and RDMA. EQDS operates as edge functions, scheduling traffic
over UDP using an NDP-derived control loop, while Aquila uses a
ToR-in-NIC (TiN) chip for hardware-based transport (GNet). SDP
can be multiplexed within these systems, providing abstraction and
encryption to the application, and can also be used between edge
functions.

8 Conclusion

We explored a new design point of secure datacenter transport
protocols that supports message abstractions crucial for both in-
network and in-host load balancing, TLS offload available in com-
modity NICs, and native transport protocol, while preserving the
security properties enabled by TLS/TCP. Our key takeaway is that
it is essential to co-design encryption and transport protocol to
enable those properties. We believe we made a substantial progress
towards promoting alternative, secure transport protocols in data-
centers.

Acknowledgments

We are grateful to the anonymous reviewers for valuable comments.
We thank John Ousterhout for the discussion on Homa. We also
thank Boris Pismenny for helping us understand TLS offload. This
work was in part supported by EPSRC grant EP/V053418/1, Royal
Society Research Grant, and gift from Google and NetApp.

References

[1] [n.d.]. ([n.d.]).
[2] [n. d.]. Kernel Connection Multiplexer.
Documentation/networking/kem.txt. ([n. d.]).

https://www.kernel.org/doc/

“Inspired by Encrypted Client Hello [29].

https://www.kernel.org/doc/Documentation/networking/kcm.txt
https://www.kernel.org/doc/Documentation/networking/kcm.txt

=

Designing Transport-Level Encryption for Datacenter Networks

[n. d.]. Kernel TLS offload. https://www.kernel.org/doc/html/latest/networking/
tls-offload.html. ([n. d.]).

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference
(SIGCOMM °10). Association for Computing Machinery, New York, NY, USA,
63-74. https://doi.org/10.1145/1851182.1851192

Andrea Bittau, Michael Hamburg, Mark Handley, David Mazieres, and Dan Boneh.
2010. The Case for Ubiquitous Transport-Level Encryption. In 19th USENIX
Security Symposium (USENIX Security 10).

Daniel Borkmann and John Fastabend. [n. d.]. Combining kTLS and BPF for
Introspection and Policy Enforcement. Linux Plumbers Conference 2018. ([n.
d.]).

Qizhe Cai, Midhul Vuppalapati, Jachyun Hwang, Christos Kozyrakis, and Rachit
Agarwal. 2022. Towards y s tail latency and terabit ethernet: disaggregating
the host network stack. In Proceedings of the ACM SIGCOMM 2022 Conference.
767-779.

Bruce Davie and Jesse Gross. 2014. A Stateless Transport Tunneling Protocol for
Network Virtualization (STT). Internet-Draft draft-davie-stt-05. Internet Engi-
neering Task Force. https://datatracker.ietf.org/doc/draft-davie-stt/05/ Work in
Progress.

Nandita Dukkipati, Neelesh Bansod, Chen Zhao, Yadong Li, Jay Bhat, Shiraz
Saleem, and Anjali Singhai Jain. 2024. Falcon: A Reliable and Low Latency
Hardware Transport. The Technical Conference on Linux Networking (Netdev
0x18), https://netdevconf.info/0x18/sessions/talk/introduction- to-falcon-reliable-
transport.html. (2024).

[10] John Fastabend. [n. d.]. Seamless transparent encryption with BPF and Cilium.

Linux Plumbers Conference 2019. ([n. d.]).

Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri,
Arjun Singh, Stephen Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan Yoo,
Raghuraman Balasubramanian, Prashant Chandra, Michael Cutforth, Peter Cuy,
David Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy, Zuowei
Shen, Ming Tan, Ye Tang, Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat.
2022. Aquila: A unified, low-latency fabric for datacenter networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1249-1266. https://www.usenix.org/
conference/nsdi22/presentation/gibson

Google. 2022. Encryption in transit. https://cloud.google.com/docs/security/
encryption-in-transit. (2022).

Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation
(0OSDI’'12). USENIX Association, Berkeley, CA, USA, 135-148. http://dl.acm.org/
citation.cfm?id=2387880.2387894

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM °17). Association for Computing Machinery, New York, NY, USA,
29-42. https://doi.org/10.1145/3098822.3098825

Yutaro Hayakawa, Michio Honda, Douglas Santry, and Lars Eggert. 2021. Prism:
Proxies without the Pain. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 535-549. https:
//www.usenix.org/conference/nsdi21/presentation/hayakawa

Tom Herbert. 2016. Data center networking stack. The Technical Conference on
Linux Networking (Netdev 1.2), https://legacy.netdevconf.info/1.2/session.html?
tom-herbert/. (2016).

Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Han-
dley, and Hideyuki Tokuda. 2011. Is It Still Possible to Extend TCP?. In Proceed-
ings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference
(IMC °11). Association for Computing Machinery, New York, NY, USA, 181-194.
https://doi.org/10.1145/2068816.2068834

[18] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and

Secure Transport. RFC 9000. (May 2021). https://doi.org/10.17487/RFC9000
Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sungh-
wan Thm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation (NSDI’14). USENIX
Association, Berkeley, CA, USA, 489-502. http://dl.acm.org/citation.cfm?id=
2616448.2616493

Xiaochun Lu and Zijian Zhang. 2023. Leveraging Homa: Enhancing Datacen-
ter RPC Transport Protocols. The Technical Conference on Linux Network-
ing (Netdev 0x17), https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-
paper.pdf. (2023).

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SSIGCOMM ’18). Association for Computing Machinery,

APNET 2025, August 07-08, 2025, Shang Hai, China

New York, NY, USA, 221-235. https://doi.org/10.1145/3230543.3230564
Michael F Nowlan, Nabin Tiwari, Janardhan Iyengar, Syed Obaid Amin, and Bryan
Ford. 2012. Fitting Square Pegs Through Round Pipes: Unordered Delivery {Wire-
Compatible} with {TCP} and {TLS}. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). 383-398.

Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa, Cristi Baciu,
Mark Silberstein, Georgios Nikolaidis, Mark Handley, and Costin Raiciu. 2022.
An edge-queued datagram service for all datacenter traffic. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 761-777. https://www.usenix.org/conference/nsdi22/
presentation/olteanu

John Ousterhout. 2021. A Linux Kernel Implementation of the Homa Transport
Protocol. In 2021 USENIX Annual Technical Conference (USENLX ATC 21). USENIX
Association. https://www.usenix.org/conference/atc21/presentation/ousterhout
Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran Liss, Adam Morrison, and
Dan Tsafrir. 2021. Autonomous NIC offloads. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 18-35.

Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The benefits
of general-purpose on-NIC memory. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1130-1147.

Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath
Raghavan. 2011. TCP fast open. In Proceedings of the Seventh COnference on
emerging Networking EXperiments and Technologies. 1-12.

Jinglei Ren. [n. d.]. YCSB-C. https://github.com/basicthinker/YCSB-C. ([n. d.]).

] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2023. TLS

Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-17. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-tls-esni/17/ Work in
Progress.

Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
2021. ReDMArk: Bypassing RDMA Security Mechanisms. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 4277-4292. https://www.
usenix.org/conference/usenixsecurity21/presentation/rothenberger

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785-808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu, Hassan Wassel,
Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Krishnamurthy, David E Culler,
and Henry M Levy. 2023. A Cloud-Scale Characterization of Remote Procedure
Calls. In Proceedings of the 29th Symposium on Operating Systems Principles. 498—
514.

Amazon Web Services. 2024. Security Pillar: AWS Well-Architected Frame-
work. https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/
welcome.html. (2024).

Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A cloud-optimized
transport protocol for elastic and scalable hpc. IEEE micro 40, 6 (2020), 67-73.
Brent E. Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee Vamanan,
and Aditya Akella. 2021. TCP is Harmful to In-Network Computing: Designing a
Message Transport Protocol (MTP). In Proceedings of the Twentieth ACM Workshop
on Hot Topics in Networks (HotNets °21). Association for Computing Machinery,
New York, NY, USA, 61-68. https://doi.org/10.1145/3484266.3487382

Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee Vamanan,
and Aditya Akella. 2021. TCP is Harmful to In-Network Computing: Designing a
Message Transport Protocol (MTP). In Proceedings of the Twentieth ACM Workshop
on Hot Topics in Networks. 61-68.

Lizhuang Tan, Wei Su, Yanwen Liu, Xiaochuan Gao, and Wei Zhang. 2021. DC-
QUIC: Flexible and Reliable Software-defined Data Center Transport. In IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). 1-8. https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.
9484596

Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.
2020. {sRDMA }-Efficient {NIC-based} Authentication and Encryption for
Remote Direct Memory Access. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 691-704.

Mellanox Technologies. 2020. Mellanox Corporate Update—Unleashing the Power
of Data. (2020).

Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu. 2021.
Concordia: Distributed Shared Memory with In-Network Cache Coherence. In
19th USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association, 277-292. https://www.usenix.org/conference/fast21/presentation/
wang

Xiangrui Yang, Lars Eggert, Jorg Ott, Steve Uhlig, Zhigang Sun, and Gianni
Antichi. 2020. Making quic quicker with nic offload. In Proceedings of the Workshop
on the Evolution, Performance, and Interoperability of QUIC. 21-27.

https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://doi.org/10.1145/1851182.1851192
https://datatracker.ietf.org/doc/draft-davie-stt/05/
https://netdevconf.info/0x18/sessions/talk/introduction-to-falcon-reliable-transport.html
https://netdevconf.info/0x18/sessions/talk/introduction-to-falcon-reliable-transport.html
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://cloud.google.com/docs/security/encryption-in-transit
https://cloud.google.com/docs/security/encryption-in-transit
http://dl.acm.org/citation.cfm?id=2387880.2387894
http://dl.acm.org/citation.cfm?id=2387880.2387894
https://doi.org/10.1145/3098822.3098825
https://www.usenix.org/conference/nsdi21/presentation/hayakawa
https://www.usenix.org/conference/nsdi21/presentation/hayakawa
https://legacy.netdevconf.info/1.2/session.html?tom-herbert/
https://legacy.netdevconf.info/1.2/session.html?tom-herbert/
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.17487/RFC9000
http://dl.acm.org/citation.cfm?id=2616448.2616493
http://dl.acm.org/citation.cfm?id=2616448.2616493
https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-paper.pdf
https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-paper.pdf
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://www.usenix.org/conference/atc21/presentation/ousterhout
https://github.com/basicthinker/YCSB-C
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/17/
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://doi.org/10.1145/3484266.3487382
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484596
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484596
https://www.usenix.org/conference/fast21/presentation/wang
https://www.usenix.org/conference/fast21/presentation/wang

APNET 2025, August 07-08, 2025, Shang Hai, China Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, and Michio Honda

[42] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX Associa-
StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs. tion, Denver, CO, 43-56. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/yasukata

149

https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata
https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata

	Abstract
	1 Introduction
	2 Design Space
	2.1 Transport-Level Encryption
	2.2 Message-Based Transport
	2.3 Substrate for Offloading

	3 SDP Design Challenges
	4 SDP Design
	4.1 Session Initiation
	4.2 Arbitrary-Sized Unordered Messages
	4.3 Message Parallelism
	4.4 Replay Attack Protection
	4.5 TLS Hardware Offload

	5 Evaluation
	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References

