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Object storage systems, which store data in a flat name
space over multiple storage nodes, are essential components
for providing data-intensive services such as video streaming
or cloud backup. Their bottleneck is usually either the com-
pute or the network bandwidth of customer-facing frontend
machines, despite much more such capacity being available at
backend machines and in the network core. Prism addresses
this problem by combining the flexibility and security of tradi-
tional frontend proxy architectures with the performance and
resilience of modern key-value stores that optimize for small
I/O patterns and typically use custom, UDP-based protocols
inside a datacenter. Prism uses a novel connection hand-off
protocol that takes the advantages of a modern Linux kernel
feature and programmable switch, and supports both unen-
crypted TCP and TLS, and a corresponding API for easy
integration into applications. Prism can improve throughput
by a factor of up to 3.4 with TLS and by up to 3.7 with TCP,
when compared to a traditional frontend proxy architecture.

1 Introduction

A scale-out architecture for object storage systems is essential
not only for supporting large storage capacities but also to
incorporate sufficient compute and network bandwidth so
the system can offer a predictable high-throughput and low-
latency service to clients. Non-volatile memories (NVM) now
fill the performance gap between networking and storage [28]
with measured throughputs of 39.4 Gb/s and access latencies
of 305 ns [34], emphasizing the importance of minimizing
storage stack overheads for use with NVM [33].

A common design pattern seen in object storage systems
[2, 3, 22, 35, 41, 65] uses a set of frontend machines to
mediate client requests and relay them to a set of backend
machines, as illustrated in the left diagram in Figure 1. The
frontend often acts as a cache and/or load balancer to sharded
or replicated backends. In this architecture, handling small
objects incurs severe network inefficiencies, and handling
large objects is limited by both network and compute resource
availability because of data movement and encryption [2].
However, such systems have been widely adopted because of
practical tractability when encryption and filtering are required,
and because the performance characteristics of traditional
disk-based backends are so poor that the CPUs and network
typically are under-utilized, i.e., are not bottlenecks [67].
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Figure 1: Scale-out architecture variants.

Recent approaches such as SwitchKV [45], NetCache [37]
and Pegasus [44] use a content-based routing architecture,
where servers interact with programmable switches, as illus-
trated in the central diagram in Figure 1. These approaches
significantly improve throughput, latency and resilience to
skew that is prevalent in realistic workloads, because the
switches can redirect traffic that would otherwise be arriving
at congested backend nodes.

While this overall concept is promising, these systems can
only handle unencrypted single-packet-sized objects of up to
1.5 to 9K B (with jumbogram fabrics), because the switch
data path must understand the application logic. Also, clients
need to use custom UDP-based protocols and implement loss
recovery and congestion control functionality by themselves,
which is non-trivial especially when serving clients over
the Internet. Other content-routing approaches support large
objects [13, 40, 71], but do not fully support TCP and hence
cannot support industry-standard TLS security or popular
application-level protocols (e.g., HTTP and Amazon S3).

This paper presents Prism, a framework that enables the
new object storage architecture that combines the flexibility
of frontend proxies with the efficiencies and resilience of
content-routing approaches, as illustrated in the right diagram
in Figure 1. It transparently scales out to many clients and
supports arbitrarily-sized objects, TCP and TLS, allowing
applications to secure industry-standard protocols such as S3
over HTTPS.

A key concept of Prism is repeatable TCP connection
hand-off, which allows a TCP connection to be re-homed to
different machines over its lifetime. This enables the frontend
to examine (even encrypted) requests without requiring it to
then also relay object payloads (i.e., bulk data), addressing one
of the main drawbacks of traditional proxy architectures (Sec-
tion 2). At the expense of a fixed per-request cost, repeatable
connection hand-off smoothly distributes the I/0O, compute
and network bandwidth usage across the backends, avoiding
bottlenecks in the data path.



The novelty and viability of Prism are based on two other
recent innovations. Prism is novel because of its new TCP
hand-off protocol that conforms to the TCP state serializa-
tion feature available in modern Linux, which is also under
development in FreeBSD [66], and overcomes the limitation
of this feature (Section 4). Prism is now viable because of
the availability of scalable, fine-grained state management
techniques for programmable switches, such as SilkLoad [51]
and FlowBlaze [8, 58], which enable Prism to control a large
number of concurrent flows with fast switch rule management.

Prism has been implemented on Linux hosts and eBPF-
based software switches, and for this paper was instantiated as
an S3-compatible object store in order to demonstrate much
better throughput and latency when compared to a frontend
proxy architecture.

This paper makes three main contributions:

* Characterization of network and CPU utilization in the

current proxy-based architecture with TLS (Section 2.3).

* A robust TCP hand-off protocol for commodity pro-

grammable switches and network stack (Section 4.2).
* Improvement of resource utilization in the replicated or
sharded backend architecture (Section 5).

In the remainder of this paper, Section 2 reviews how object
storage systems work and characterizes their performance.
Section 3 describes our high level approach and design chal-
lenges. Section 4 details the design and implementation of
Prism, including its connection hand-off protocol and soft-
ware stack. Section 5 evaluates Prism, and Section 6 discusses
implications of our work. Section 7 describes related work.
The paper concludes with Section 8.

2 Background and Problem

The primary focus of this paper is commercial object storage
systems. This section describes the concepts behind such
systems, then characterizes their performance.

2.1 Motivation: Object Storage Systems

Object storage systems serve huge amounts of data, both when
instantiated as public cloud services, such as Amazon S3,
Azure Storage, Dropbox and others, or as private installations,
such as NetApp StorageGRID or Del/EMC ECS. Cloud
storage systems are also being deployed in edge clouds [4, 43],
which are smaller but closer to clients, compared to hyperscalar
public clouds, but can still generate a terabit of data per
second [4]. Scale-out object storage systems are also used
in many other scenarios. For example, OpenStack, a popular
multi-tenant cloud platform, uses them as a primary data
repository [65], and optionally supports bandwidth isolation
and fine-grained filtering [22, 23]. IBM has deployed them
to build a scale-out Docker registry that maintains Docker
images and other data [3].

A common design pattern for such object storage systems
uses a set of client-facing frontend machines that arbitrate
access to a set of backend storage machines. The frontend
typically does not persistently store any data, but may in some
instantiations locally cache some objects. Clients that connect
to the storage system, over the wider Internet or from within an
enterprise or datacenter network, will be routed to one of the
frontend machines via DNS round-robin or L4 load-balancers.
The designated frontend machine then acts as a proxy for
the set of storage backends. The role of the proxy includes
application-level firewalling the internals of the storage system
from the outside, possibly TCP and/or TLS termination, client
and/or request authentication and authorization, in addition to
relaying requests and responses.

Once the TCP connection is established, the network traffic
consists mostly of bulk data transfer between client and the
backend servers, relayed by a frontend machine. Consequently,
a frontend machine spends the majority of their resources
relaying traffic between clients and backends. The protocols
used by clients are usually RESTful, reusing TCP connections
for many individual storage transactions that can be served by
the different backends. The frontends are responsible for con-
currently handling many clients, which can lead to congestion
at the client-facing links [2]. Modern storage devices, such as
NVMe SSD and persistent memory, further stress frontend
machines, because unlike slow spinning disks [6, 54] these
devices do not constrain the networking throughput.

2.2 System Model and Components

In summary, the frontend machine in scale-out object storage
systems:

1. terminates client TCP and/or TLS connections

2. receives requests that contain a target object identifier,

e.g., a key or URL
3. redirects the request to a suitably chosen backend
4. forwards request data from the client to the backend

5. forwards response data from the backend to the client

Subsequent requests over an already-established connection
can be directed to different backends. This re-homing of the
connection incurs a cost that is made up of several components,
which we will review here to better understand the measured
end-to-end performance in Section 2.3.

Data movement: A proxy relays data between two TCP
sockets issuing two system calls: read () on one socket and
write() on another, each copying data to and from the kernel.
The costs of these system calls increase with the number of
bytes read or written. When the data is very small (a few
hundreds of bytes or smaller), the fixed per-call costs, i.e., the
context switch overhead (several tens of ns) dominates the total
cost—the cost of moving the data is negligible. For large data
sizes, the total cost is dominated by the per-byte cost of moving
the data. Proposed optimizations include TCP Splice [48, 63]
and tproxy in recent Linux kernels, which move data between



two TCP sockets within the kernel by swapping socket buffer
pointers, without actually copying any data. However, these
approaches struggle to support encryption and other more
complex application logic.

Data encryption: For confidentiality and authentication,
TLS has become the standard in today’s Internet and datacen-
ters. Therefore, offloading techniques for TLS have attracted
considerable attention. Some TLS libraries can take advantage
of hardware acceleration for various ciphers (e.g., AES-NI
CPU instructions). In-kernel TLS support was recently added
to Linux and FreeBSD to use cryptographic engines avail-
able on some NICs. Nevertheless, encrypting traffic comes
at significant per-byte processing costs, similar to the data
movement costs.

Application logic: Proxies typically perform application-
level processing when relaying data. For example, they look
up a key or URL embedded in the request data to select a
suitable backend for the target value or object, or they may scan
data to filter out particular requests. Since such information is
typically included in the application-level protocol headers,
the costs of such application logic usually does not increase
with the size of transferred object. (Although it can if this
information is contained in the request payload.)

Network stack: Modern kernel TCP/IP stacks can send
and receive bulk data at the rate of tens of Gb/s by utilizing
NIC offload features (in particular, checksum, TCP segmen-
tation and large receive offloads). TCP and especially TLS
connection establishment is an expensive operation due to
needing multiple network round-trips, and the required up-
dates to shared resources in the kernel impair multi-core
parallelism [57]. However, modern application protocols are
usually already designed to maximize connection reuse to
amortize these costs. Hence, this paper does not concern itself
with application protocols that have high connection-open
rates; various improvements that are complementary to our
work have already been proposed for high-rate connection
openings [46, 57] and small data transfers [24, 36].

Network topology: In rack-scale storage in large datacen-
ters [44, 53] or edge clouds such as used for content delivery
networks (CDNs) [4], operators wire servers uniformly so that
they can assign the role of servers (e.g., frontend and backend)
flexibly depending on the node failure or service demands, as
itis very expensive to rewrite cables [73] or the physical space
is at a premium in the edge clouds [4]. Each rack consists of
one or more top-of-rack (ToR) switches equipped with high
bandwidth uplinks. These uplinks are a Clos [16] network
fabric in datacenters and Internet exchanges in CDNs, respec-
tively. In such a deployment, individual machines cannot be
“scaled up” to create additional proxying capacity.

2.3 End-to-End Performance

To characterize performance of the proxy-based systems, we
imitate the aforementioned network topology using a six
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Figure 2: Throughput and CPU usage of an nginx cluster.
One node acts as a proxy and the other five act as backends.
Every node connects to a switch with a 10 Gb/s link. The
switch connects to a client machine with a 40 Gb/s link (See
Figure 8 for illustration). CPU usage can be at most 1200 %
due to six dual-core servers.

logical node cluster, each of which connects to a cluster switch
over a 10 Gb/s link, and a client machine that is connected
to the cluster switch over a 40 Gb/s link that serves as a high
bandwidth uplink (see Section 5.1 for hardware details). We
installnginx, a high-performance, popular web server, to every
server cluster node; one acts as a frontend (also generally called
reverse proxy) and the other five act as backends. The client
node runs wrk HTTP benchmark tool to generate requests to
retrieve objects from the server cluster.

Figure 2 plots throughput measured by the client and CPU
utilization monitored at the servers. The requested object sizes
vary, from 64 B to 4 MB. Although the real object storage
systems handle a wider range of object sizes (e.g., hundreds
of KB to a few MB for photos, and tens or hundreds of MB
for videos, deep learning models and VM images), we select
the range that characterizes the performance of the system.

With unencrypted HTTP, the frontend (“Nginx-HTTP”) can
serve up to 9.2 Gb/s, which is close to the 10 Gb/s line rate,
taking into account protocol header and framing overheads.
At the same time, the frontend CPU resources (“Nginx-HTTP-
FE”) are also fully utilized. When we allocate one more CPU
core to the frontend (not plotted), the network bandwidth
becomes the bottleneck (i.e., it results in idle CPU cycles).

When using HTTPS, the frontend (“Nginx-HTTPS”) is able
to serve only up to 9.1 Gb/s (“Nginx-HTTPS-FE”). Further, it
requires larger objects to achieve that throughput than HTTP
cases. This performance reduction is due to performing TLS
cryptographic operations at the frontend that acts as a proxy,
which fully utilizes its CPU resources.

These experiments confirm that either the fabric attachment
bandwidth or the CPU resources of the frontend proxy become
the bottleneck for this workload, depending on the hardware
setup and the use of TLS. Since the Internet-facing capacity of



the switch and backend CPU resources are left underutilized
in these experiments, ideally the backends would circumvent
the proxy and the switch would forward data directly between
clients and backends. The Prism architecture enables this
design.

3 Approach and Challenges

These observations confirm the need for reducing CPU usage at
the frontend and increasing network utilization at the backends
and switch uplink. Is it possible to exclude the frontend from
the end-to-end data path for the majority of a transaction,
while allowing it to perform its necessary tasks? We will show
that it indeed is possible, but that doing so requires a different
request-redirection approach than traditionally used. In this
section we describe the high-level approach and highlight the
main challenges, then describe our resulting design of Prism
in Section 4.

3.1 Request-Granularity Redirection

The fundamental problem with a proxy architecture is that
all traffic is mediated by the frontend; it relays all traffic
between clients and backends. If the ToR switch itself could
be instructed to relay data between clients and backends, that
forwarding would happen at the faster core network speeds,
and—more importantly—eliminate the traditional frontend
participation in bulk data relaying. In other words, the frontend
could focus on the control-plane aspects of relaying, and the
fabric would focus on the data-plane aspects, which optimizes
theirrelative strengths. A frontend confined to the control plane
would have a great deal more network and CPU bandwidth
available to support more clients per machine, and would thus
reduce the overall number of frontend machines needed to
support a given client population, making the service more
cost effective.

Specialized examples if such a general architecture have
been realized in the narrow domain of small-object key-value
stores, such as SwitchKV [45], NetCache [37] and Pegasus [44].
However, these systems handle only single-packet-sized trans-
actions and require clients to use custom, unencrypted proto-
cols. It should be noted that for large objects, it is not trivial to
implement congestion control and loss recovery that are able
to cope with various Internet conditions, such as tail loss [9],
incast [1] and phase effects [17].

General, commercially viable object storage systems of
course need to support objects larger than a single packet.
They also need to be able to secure their client communications
with industry standard protocols such as TLS. One example is
Amazon S3, the de facto industry standard for object storage,
which runs over HTTPS, i.e., TCP and TLS. For such a protocol,
after the frontend has processed application-level connection
setup (e.g., user authentication), itis hence necessary to migrate
the entire TCP and TLS connection state to one of the storage
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Figure 3: Breakages with naive TCP hand-off designs.
Leaked packets trigger a connection reset (Section 3.2).

backends and have the fabric switches redirect traffic to it—
based on flow-level information rather than application-level
information.

3.2 TCP Hand-Off

Basic TCP hand-off provides a starting point for the request-
granularity TCP redirection of Prism. Although TCP hand-off
was already explored over twenty years ago [5, 55] based on a
custom TCP stack, it has not seen much real-world deployment
or open source availability. However, TCP connection serial-
ization, one of the essential features to enable TCP hand-off,
was added to the Linux kernel in 2012 [12]. The identical
feature is also under development in FreeBSD [66]. Therefore,
designing a new TCP hand-off protocol based on this feature
could ease the deployment of Prism approach.

When TCP connection state is serialized and then migrated
to another machine, it is essential to carefully coordinate the
updates to the necessary fabric switch rules, so that no packets
“leak” to machines that do not hold the required state—such
leakage would generate TCP RST (reset) messages, impacting
client operation. Figure 3 depicts two example scenarios where
such a connection reset occurs, because the hand-off protocol
is incorrectly designed. On the left, an already-migrated
connection receives a packet at the original machine, because
the switch does not yet to redirect packets to the new target
another server. On the right, the switch begins forwarding
packets to the new target before the connection has been
migrated there. These scenarios can happen with the hand-
off protocol designed in the past [5]. The Prism migration
protocol avoids any such problems, using the two-phase hand-
off protocol described in Section 4.2.

Also, a fabric-based connection hand-off raises concerns
about latency and scalability, because it requires manipulating
fabric switch rules on a per-request basis (or at least every
time the connection migrates). Previous studies imply that this
might pose a significant hurdle: In 2014, Liu et al. [47] report
that configuring a hardware switch can take hundreds of ps,
meaning that for short backend transactions, the hand-off cost
could significantly increase the overall request processing cost.
In 2011, Yu et al. [69] show maintaining fine-grained flow
state in hardware switches to be infeasible because of limited
on-chip memory.



However, more recent work has addressed some of these
constraints. SilkLLoad [51] and FlowBlaze [8, 58] store state
for millions of flows in hardware switches; the latter inserts
hardware switch rules in a few ps. The Prism hand-off protocol
incorporates these more recent observations.

4 Design

Based on the challenges above, the goals of Prism are to (1)
design an efficient connection hand-off protocol that works
for both TCP and TLS without breaking client sessions, and
(2) to build a software stack that implements the protocol
and provides a suitably abstract API to applications. We start
with describing what an end-to-end data TCP transfer looks
like, using the example of a read request that is received
by a frontend and served by a backend. We then detail our
connection hand-off protocol, which performs a two-phase
switch configuration, and our software stack, which ensures
correct kernel- and application-level operations.

4.1 Prism in Action

Figure 4 illustrates the Prism hand-off protocol in a packet
sequence diagram. Solid arrows indicate packets sent on the
TCP connection; dashed lines indicate Prism control messages
between the frontend, switch and backends.

Establish connection: As illustrated in Figure 4, a client
opens a TCP connection with a Prism frontend server, option-
ally followed by a TLS handshake.

Parse request: The client begins a transaction by sending
a request, which the frontend receives and parses. When the
frontend determines that it has received the entire request, it
consults the metadata it maintains about the backend servers
to select one to handle the request.

Hand-off request to backend: The frontend serializes the
TCP connection and TLS session state. TCP state includes
ports, sequence and ACK numbers and the TCP options
negotiated for both directions of the connection; the TLS
state includes the exchanged shared secrets. The frontend then
contacts the chosen backend and passes the serialized states,
the client IP address, and the client request, so that the backend
can take over the connection and serve the request.

The backend instructs the Prism switch to rewrite the
destination IP address of packets sent from the client to
that of the chosen backend server, and to rewrite the source
IP address of packets sent from that backend server to the
client to that of the frontend. The switch also rewrites the
destination or source MAC address, if the client resides in
the same broadcast domain. The consequence of this is that
any subsequent packets on this connection will be exchanged
directly between the client and the backend, with the switch
performing the required rewriting. Since the inserted rules
only affect a single TCP connection, other connections, either
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Figure 4: End-to-end Prism operation. Solid arrows indicate
TCP packets, dashed ones control messages. Step (8)—(11)
indicates our two-phase hand-off protocol described in Sec-
tion 4.2.

to the same frontend or other destinations, remain unaffected.
We describe detailed procedures later in this section.

The backend then de-serializes the TCP and TLS state by
instantiating a TCP socket based on the information in the
serialized connection state and its local IP address (i.e., not
frontend’s). Because of the active switch rules, the client sees
the traffic coming from this backend as if it was coming from
the original frontend.

Process request at backend: The backend serves the client,
sending back the response over the migrated connection.

Prepare for next request: After a transaction has com-
pleted, the backend may return the connection to the frontend
and remove the corresponding switch rules, if it wishes subse-
quent requests on the same connection to be handled by the
original frontend. The backend may parse the next request by
itself and hand off the request to another backend.

Tear connection down: When the client or the backend
itself closes the connection, the backend withdraws the corre-
sponding switch rules.

4.2 Two-Phase Hand-Off Protocol

As shown in Figure 3, a deficient TCP hand-off protocol
design breaks client connections. We therefore develop a
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new connection hand-off protocol that works with the TCP
serialization feature available in Linux.

One “hack” would be to drop reset segments sent on a
connection under migration with host firewall rules. However,
this design requires maintaining flow steering state across
the switch fabric and the servers, which complicates failure
handling. We thus reject this design option.

Our solution instead employs a two-phase switch configura-
tion. First, the host instructs the fabric switch to drop all traffic
that belongs to the connection being migrated. This prevents
this connection from receiving any further packets that might
then lead to RSTs. It should be noted that this does not affect
performance, because what may be dropped are only unusual
packets, such as spurious retransmissions.

Then, a machine serializes a TCP connection and its TLS
session and hands this serialized state off to another machine.
The target machine then restores the TCP and TLS state.
Finally, the target machine sends three commands to the
switch atomically. The first one inserts a new rule that rewrites
the source IP address of outgoing packets sent from the target
machine. The second updates the existing switch rule to
redirect any inbound packets to the target machine (instead
of the original one). The third removes the drop rule. This
two-phase hand-off procedure is depicted over step (8)—(11)
in Figure 4.

Prism inserts or withdraws switch rules over a simple,
stateless UDP control protocol that triggers in-switch rule
manipulation without control-plane involvement. The switch
logic that enables the two-phase connection hand-off is il-
lustrated in Figure 5. This protocol implements a simple
timeout-based retransmission mechanism, because we assume
the communication over the shared links with client data traffic,
which can be congested.

4.3 Stack and API

The hand-off protocol described above dictates that many
individual commands and application I/O, which runs asyn-
chronously, be executed in coordination with each other. Thus,
we need a software stack that ensures the correct system state
transitions, rather than just API extensions. This stack adds a
loadable kernel module that allows applications to detect com-
pleted connection removal, an event-based execution engine
that drives both the hand-off protocol and application I/O, and
high-level APIs for applications to read and write data, and
open, close and redirect connections. Figure 6 illustrates the
Prism stack; the rest of this section details key components.

TCP state tracking. Before the withdrawal of a switch rule
that rewrites the source IP address, the in-kernel connection
state must have been freed completely to ensure the connection
does not transmit any further packets. Unfortunately, this
happens silently, long after an application closes a socket.
Since the kernel does not notify applications of such events,
we implemented a new kernel module to do so, using the
Linux eventfd framework and socket destructor (“Conn.
dtor” in Figure 6). This approach is suitable because the event
loop component in the stack, described later, can monitor
connection removal events together with any other events,
such as new data read from the kernel and requests issued by
the application. A similar method is possible also in FreeBSD.

TCP and TLS state serialization. Prism relies on the
Linux TCP_REPAIR feature [12] to serialize TCP connec-
tion state. Based on the option parameter, getsockopt ()
serializes send and receive buffer data, sequence and ACK
numbers and negotiated TCP options, which are restored using
setsockopt () with the same option name. Prism uses the
tlse library for TLS handshake and serialization, but for the
data path, it uses the in-kernel TLS stack of recent Linux ker-
nels, in order to benefit from future hardware offload support.
We implemented a new getsockopt () option to retrieve the
in-kernel TLS state, and upstreamed it to the mainline Linux
kernel.

Switch communication. The stack is in charge of commu-
nication with the switch using the custom UDP-based packets
(Section 4.2). It schedules and sends switch rule update com-
mands to the switch when the application requests connection
hand-off or restoration, and waits for the response that includes
a status code.

Event loop. Because of the need to perform migration
operations for application sockets, Prism discourages appli-
cations from using their sockets directly. The stack needs
to coordinate and execute these operations for multiple file
descriptors in parallel. Therefore, Prism augments 1ibuv, a
popular event-based I/O library that hides low-level system
calls, like epol1, kqueue, read and write, from applications.
An application associates its own callbacks with events, such
as new connection establishment or network or file descriptor
readiness for I/O. Prism extends 1ibuv to allow applications
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to associate their callbacks on top of TLS connections, and
to coordinate the application requests and its hand-off proto-
col, including TCP state tracking and switch communication
described above.

API. The programming model of Prism is based on 1ibuv
with two new methods to export or import migrating connec-
tions, and a TLS connection abstraction. Figure 7 implements
the frontend and backend roles of the example object store,
which statically partitions data across the servers by key, and
covers the vast majority of Prism APIs. The main() function
initiates the event loop with two TCP ports to monitor: one for
client requests and the other for hand-offs from other servers.
on_accept () runs upon establishment of a client TCP con-
nection and initiates the TLS handshake viauv_tls_init().
When new client data arrives, it is decrypted and on_read ()
is executed. who_has_val () identifies whether the current
server hosts the requested content, based on its key. The
server either redirects the request to another server using
prsm_export (), or returns the content using uv_write(),
which schedules transmission in the event loop.

Although the use of these APIs ensures the correct hand-off
state transitions, we do not prevent applications from the use
of regular socket APIs. A regular application based on an
epoll event loop would monitor three additional types of file
discriptors: one for the terminated connection notification, an-
other for switch communication and the other for connections
to other servers. The application then needs to coordinate
the events of these descriptors, for example, to serialize and
hand-off a connection only after configuring the switch.

Switch. Many conventional frameworks, including eBPF
and P4, are suitable to implement the Prism switching logic
described in Figure 5. Although OpenFlow can also be used,
this option incurs higher connection hand-off latency due to
the access to remote control plane.

The Prism packet transformation logic can be implemented
on top of an existing L2 switching or L3 forwarding logic
without having to disrupt the existing network addressing, as
shown in Figure 6. This also allows the Prism switch to be
deployed alongside a non-programmable switch as a software
switch, as we will show in our experiments.

on_read(client, buf) { / buf contains a decrypted request

1

2 const uint64_t key = get_key(buf);

3 who = who_has_val(key);

4 if (who != me)

5 prsm_export(client, who); / prsm_* are Prism methods
6 else {

7 (char *obj, int objlen) = get_objp(key);

8 req = new uv_buf_t(.base = obj, .len = objlen);
9 uv_write(req, client, on_write);

10 }

n o}

13 on_write(req) {

14 free(req->base);

17 on_agcept(server){

18 client = new uv_tls_t;

19 loop = server->loop;

20 uv_tls_init(loop, client); / uv_*are libuv
objects/subclasses

21 prsm_accept(server, client);

2 uv_read_start(client, on_read);

23}

25 main() {

26 uv_tls_t server, internal; //extend uv_tcp_t

27 loop = uv_default_loop(Q);

28 uv_tls_init(loop, &server);

29 uv_tcp_bind(&server, "0.0.0.0:50000");
30 uv_tcp_bind(&internal, "0.0.0.0:60000");

31 uv_listen(&server, on_accept);

32 uv_listen(&internal, prsm_import);
33 uv_run(loop) ;

a4}

Figure 7: Prism application pseudo code. Prism extends
libuv. Server returns requested object (line 9) if present,
otherwise hands off request to actual custodian (line 5). The
code thus serve the role of both frontend and backend.

4.4 Limitations

Concurrent requests. When a frontend or backend receives
parallel requests being handled by different backends in the
same TCP connection, it must serialize these requests using
one of the following options. The first option is for a backend
to simply block any arriving subsequent requests. If these
requests need to be processed by different backends, the server
hands off the connection after processing its current request.
The second option is for the backend to send a TCP “zero
window” advertisement to the client. This method turns out
to be rather complex, because the backend must do so before
TCP acknowledges received data, which may already have
contained a subsequent request.

To maximize the performance, it is ideally the responsibility
of the application-level protocol to prevent the client from
issuing another request that might need to be handled by a
different backend before an ongoing transaction on the same
connection has completed. Traditional proxies can process
parallel requests faster than Prism, if the frontend has enough
attachment network bandwidth and spare CPU cycles to ag-
gregate the responses from multiple backends; we leave this
analysis as future work.

Small transfers. For a small-message transactional work-
load, i.e., where requests and responses fit into a few TCP
packets, Prism may not be a good solution. In such cases, the
overheads—switch configuration and connection hand-off—



cannot be sufficiently amortized. We analyze this trade-off in
Section 5, which shows that 8 KB (i.e., 6 packets) is sufficient
to amortize these overheads.

4.5 Implementation

The Prism server stack consists of 2193 Lines-of-Code (LoC):
612 LoC for TCP and TLS state serialization, 255 LoC for the
switch configuration protocol, 167 LoC for active connection
tracking, 130 LoC for the loadable kernel module to detect
TCP connection removal and 1029 LoC for integration of
these components. We modify a single line of 1ibuv, and
port tlse for our TLS abstraction.

We also implement a high performance software switch
that makes up the Prism logic in Figure 5. To run the same
code in hardware in the future, and to prevent the system from
unexpected crash caused by software bug that affects many
servers, we implement an eBPF execution environment as a
switching logic module of mSwitch [29], a scalable, modular
software switch that runs in the kernel. eBPF is popular
these days and known that some switch vendors will support
hardware offloading of eBPF processing. This software switch
never becomes a bottleneck throughout the experiments in the
next section.

Our source code is publicly available at https://github.

com/YutaroHayakawa/Prism-HTTP.

5 Evaluation

This section evaluates Prism and reports the following main
results:

 Prism improves throughput by a factor of up to 3.7 (with
HTTP) and 3.4 (with HTTPS), utilizing the switch uplink
and backend CPU resources efficiently.

* Prism’s throughput increases with the number of back-
ends due to the very light remaining load at the frontend,
in terms of both network bandwidth and CPU usage.

* Prism improves object retrieval latency by up to 74 %
and 96 % in the S50 and 90" percentile, respectively.

* Prism’s connection hand-off latency is 232 ps, which is
a win when transferring at least 2K B with HTTP or
16 KB with HTTPS.

* Prism can be used to build object storage systems with
partitioned or replicated backends.

5.1 Experiment Setup

Hardware and OS: Figure 8 depicts the testbed setup used
for the experiments. Each machine has a quad-core Xeon
E-1231v3 CPU clocked at 3.4 GHz, 16 GB of RAM and a
dual-port Intel X540-T2 10 Gb/s NIC, running Linux kernel
4.18. We partition it into two logical servers, dedicating one
10 Gb/s port and two CPU cores to each. The switch has a
ten-core Xeon E5-2690v4 CPU clocked at 2.6 GHz, 64 GB

40 Gbps
Switch
10 Gbps

(Be g gga)faa g

6 logical dual-core servers (3 physical quad-core, dual-10GbE servers)

Figure 8: Experimental topology.

of RAM, three dual-port Intel 10 Gb/s NICs where each port
connects to a logical server, and one Intel XL710 40 Gb/s NIC
that connects to the client. We confirmed that this switch never
becomes a bottleneck during the experiments. The client has
two Xeon E5-2640v4 CPUs, 64 GB of RAM and the same
40 Gb/s NIC as the switch. Our network does not use jumbo
frames. The connection hand-off traffic shares the same links
with the data traffic.

Software: In the baseline experiment, all of the logical
servers run a single nginx process. One server acts as a
reverse proxy, the others as backends. In the Prism experiment,
each logical server runs our custom application implemented
on top of the Prism stack described in Section 4.3. Unlike
the pseudo code in Figure 7, we use a static frontend setup
where the same frontend always establishes incoming TCP
connections and examines every request. Therefore, a backend
that receives the next request always returns the connection to
the frontend.

The communication protocol is always S3, either over
HTTP or HTTPS (i.e., with or without TLS). The client
continuously generates read or write requests using the wrk
HTTP benchmark tool [21], instrumented to issue S3 requests
(using the Lua scripting support) over 100 parallel persistent
TCP connections per backend.

5.2 Link and CPU Utilization

Figure 9 plots the throughput and CPU utilization of Prism
and the nginx baseline. Both systems redirect requests to
the backends in round-robin fashion and each backend serves
static, in-memory content.

For HTTP, Prism saturates the 40 Gb/s switch uplink (with
the protocol headers and framing overheads) for object trans-
fers of 256 KB and above, whereas nginx throughput is
constrained by the 10 Gb/s attachment link capacity. Further-
more, Prism reduces the CPU utilization of the frontend by
23 to 53 % in comparison to nginx, which utilizes nearly the
entire CPU to relay data, and uses the same amount of backend
CPU resources as the Prism backends.

For HTTPS, Prism achieves a throughput of 31.4 Gb/s
whereas the nginx baseline achieves only 9.2 Gb/s. Prism
consequently leads to a much higher utilization of the backend
CPUs, whereas nginx leaves around 75 % of backend CPU
resources idle. Since the Prism frontend offloads and load-
balances data encryption to the backends and avoids relaying
data, its CPU usage reaches at most 70 %, which is spent on
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Figure 9: Throughput and CPU usage with Prism and nginx. FE and BE stand for frontend and backend, respectively. Prism
utilizes backend CPU and network resources while keeping the frontend load low.

request redirection. These results imply that Prism would allow
operators to provision a fewer number of frontend machines
than traditional proxy architectures.

It may seem odd that overheads of the Prism frontend
appear low even for 1 K B object sizes, but there is an obvious
explanation. With nginzx, all requests and responses over all
500 parallel connections are relayed by the frontend. Prism’s
frontend hands off connections to the backends instead of
relaying requests, but it does not relay responses from the
backends. Our results indicate that the advantage of not relying
(nor encrypting) the responses at the frontend outweighs the
connection hand-off costs.

Figure 10 plots the throughput and CPU utilization of Prism
and baseline on a fewer number of backends for a subset of the
object sizes, which are 16, 256 and 512 K B. It confirms that
throughputs of Prism have increased almost proportionally
to the number of backends until they reach the limit of client
processing capacity, which is lower with HTTPS (34 Gb/s
and 28 Gb/s with HTTP and HTTPS, respectively) because of
decryption and framing overheads.

Overall, Prism improves throughput by a factor of up to 3.7
without TLS, and 3.4 with TLS. It improves CPU utilization
by factors of 2.4 and 2.6, respectively.

5.3 End-to-End Latency

Figure 11 plots the S0™ and 90 percentile transaction laten-
cies to retrieve 16, 256 or 512 KB objects (same experiments
as Figure 10). These latencies decrease when adding more
backends, except for the 90" percentile latencies with five
backends and 256 or 512 K B objects, where the throughputs
reach the maximum and queues start building up (see Fig-
ure 10). With nginzx, those latencies do not change much with
the number of backends, and are always higher than Prism,

except for those 90" percentile latencies with 256 or 512 KB
object sizes and five backends.

5.4 Connection Hand-Off Latency

Operation Latency [ps] Std. dev. [us]
Block all traffic 22 13.1
Serialize TCP 7 1.1
Serialize TLS 5 1.1
Serialize HTTP 2 0.6
Close TCP socket 9 5.0
Hand-off (to frontend) 21 144
Hand-off (to backend) 21 14.4
Deserialize HTTP 3 1.5
Deserialize TLS 109 64.3
Deserialize TCP 11 1.0
Modify rewrite rule 22 9.4
Total 232 -

Table 1: Connection hand-off latency breakdown. The se-
quence starts from a backend returning the current connection
to the frontend.

The largest concern about Prism is the connection hand-off
overheads. As described in Section 4.2, the hand-off protocol
takes two network round trips to the switch, in addition to the
connection state transfer between frontend and backends.

Table 1 reports a breakdown of the latencies of a single
connection hand-off cycle in which a backend returns a con-
nection to a frontend, which then hands off the connection
to another backend. The total is 232 us. Each operation takes
21 to 22 ps if the network is involved, otherwise 2 to 11 ps,
except for TLS deserialization that takes 109 us and whose
improvement is left as future work. The hand-off latency could
be improved if the backend examined the next request after
serving the current one, as in described in Figure 7, bypassing
the frontend and saving 21 ps. Nevertheless, since Prism out-
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50" and 90™ percentile latencies, respectively.

performs the throughput of the traditional proxy architecture
with 2 KB (HTTP) or 16 KB (HTTPS) of objects (Figure 9),
we conclude that Prism outweighs the costs of the hand-off
latency in various workloads.

5.5 Use Case

We implement two variants of an object storage system. The
first partitions content across the backends, and the second
replicates content at all backends. Thus, the partition variant
writes a write request to one of the backends based on the
key, but the replication variant does it to all the backends,
before responding to the client. In contrast to the previous
microbenchmarks in which a backend always serves the same

in-memory content, these object storage variants use Level DB
where keys identify objects that are organized into a log
structured merge tree. Thus, they include realistic storage
stack overheads. We use a RAM disk for the storage medium,
assuming faster-than-network NVM-style storage medium.
The client protocol is again S3.

5.5.1 Partitioned Object Storage Backends

Figure 12 shows throughputs over two YCSB workloads, read-
only and read-mostly that contains 5 % writes. We vary object
sizes between 16 to 512 KB and request key skewness, which
is 0.9 to 1.2 of Zipfian parameters, uniform distribution (least
skewed) and requests that always ask for the same key (most
“skewed”).

We observe throughputs stay almost the same up to Zipfian
1.0 of skewness, and a slight, up to by 17 %, drop at Zipfian 1.2
that can be considered extremely skewed. We observe that even
for an extremely skewed workload (Zipfian 1.2), throughput
decays only by up to 17 % in comparison to the uniform
distribution, demonstrating Prism’s robustness against skewed
workloads.

5.5.2 Replicated Object Storage Backends

Figure 13 shows throughputs with the same workloads but
for the replicated backends, assuming fault tolerance and load
balancing. We observe the same throughput regardless of
skewness, as the frontend redirects requests in a round-robin
fashion. Since every write is replicated to all the backends,
throughput decreases with higher write rates, more so in
comparison to the partitioned-backend cases. The lower overall
rates compared to those cases can be attributed to larger active
data that stress OS buffer caches.
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Figure 12: Prism throughputs with partitioned backends.
Top and bottom rows plot results with HTTP and HTTPS,
respectively. Prism preserves high throughputs even under
skewed workloads.

Prism’s ability to handle a partitioned key space and to
balance loads across replicas indicates its feasibility for imple-
menting sophisticated data layouts and replication algorithms,
respectively.

6 Lessons Learned

Although TCP hand-off had been proposed multiple times at
least since 1998, it has never been widely used. We initially
attributed this to the lack of scalable flow-level programmable
switches, but increasingly realized many other reasons. The
mechanism to snapshot or instantiate TCP connections in any
state, an essential feature, has been enabled in Linux in a
rather inconvenient form, that is, packet transformations must
be performed elsewhere, such as with a host firewall or at a
switch. Moreover, the TCP stack needs to emit RST packets
during the hand-off process to conform to the invariants that
apply throughout the TCP implementation.

Alternative approaches that do not require programmable
switches have been proposed by Snoeren et al. in 2000 [61,
62]. However, deploying new TCP options has been increas-
ingly difficult over the last decade due to slow network stack
evolution [30] and middlebox interferences [32].

These constraints resulted in difficulties for TCP hand-off
overall, because it requires that many operations be performed
atomically. This requirement prevents the use of a host firewall
for source address rewriting, because otherwise manage flow
state needs to be managed at both hosts and switches, requiring
a complex coordination mechanism.

Building the end-system stack was also a great burden.
However, since the TCP connection serialization has become
available in the mainline kernel, systems like Prism can now
be realized without modifications to the kernel; in fact, we
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Figure 13: Prism throughputs with replicated backends.
Throughputs are unaffected by key skewness due to evenly
distributed requests.

still needed kernel modification, but the Linux community
accepted the necessary changes, which are to implement a
new API to access the in-kernel TLS state [26], to be included
in the mainline kernel. We were able to implement the other
kernel extension, which is the connection removal notification
(Section 4.3), as a loadable kernel module. Moreover, fewer
applications today call “low-level” socket APIs directly; many
use higher-level networking libraries such as 1ibuv, which
we extend to enable the Prism stack (Section 4.3). These
phenomena support the deployability of Prism.

Another problem is frequent switch rule updates. This has
been problematic for older switches, because the rules must be
updated via the switch control plane that runs slow CPUs. In
fact, our initial prototype communicated with an RPC server
running in the control plane, and it consequently suffered from
high latencies of up to 828 us, which requires 256 K B of trans-
mitted data to amortize these hand-off costs. This led us to the
use of a custom switch manipulation mechanism that updates
the rules directly within the data plane. This becomes possible
with newer hardware and software switches, such as P4 and
eBPF, that have advanced programmability. Further, recent
improvements of flow scalability in hardware switches [8, 51,
58] also supports the feasibility of this approach.

Further, Prism does not complicate layer 4 firewalls in
the network or host, because Prism hosts never rely on host
firewalls, nor “spoof” packet addresses, as the packet transfor-
mation happens in the switch. This means that host firewall
rules can be configured based on not the address of the frontend
but that of the individual host. Local firewall policies apply
to the restored TCP connections, because Linux netfilter
creates connection states when it sees any egress packets [11].

Last but not least, we believe our approach is feasible even
in sharing switches, which has been a major concern in the
use of programmable switches in many existing systems [50].



This is because we turn the feature of the content-based
routing approaches into flow-level operations that can be
easily isolated between tenants and machines; for example,
the operator can limit address-modification rules inserted to
the switch within the address range allocated to the tenant.

7 Related Work

Our previous short paper [27] introduced Prism’s overall ap-
proach with a minimalistic proof-of-concept implementation.
This paper significantly extends Prism by incorporating the
ability to handle TLS-encrypted communication, a robust
hand-off protocol, a much-improved software stack, a more
mature implementation and an extensive evaluation.

TCP connection migration. The closest related work is a
proposal by Aron et al. in 2000 [5] that proposes content-aware
request distribution to the backend cluster, similar to Prism.
However, their hand-off protocol can break client connections
(Section 3.1) and does not support TLS (or SSL). TCP Migrate
Options [61, 62] achieve TCP connection migration using
TCP options instead of programmable switches, but have
deployment problems (Section 6).

Proxy enhancements and L7 load balancers. TCP Splice
(Section 2.2) has been improved by software [10, 59] or
hardware-assisted [52, 72] approaches. Yoda [19] improves
the fault tolerance of the proxy architecture. Squid [64],
HAProxy [25] and Proxygen [60] are open source proxy
implementations. Unlike Prism, these approaches do not elim-
inate the need of a frontend proxy to remain involved in bulk
data relaying.

Content based routing. SwitchKV [45], Pegasus [44] and
NetCache [37] as discussed in Section 3.1 eliminate frontends
that mediate traffic between the client and the backend, by
having programmable switches play the role of the frontend.
They only support data that fits into a single packet over un-
encrypted custom UDP-based protocol. NICE [40] supports
large data objects, but it relies on unencrypted UDP-based
requests and TCP connections initiated by the server for re-
ply. Therefore, it supports neither TLS nor industry-standard
protocols such as S3. Strata [13] is a scale-out storage system
with NFSv3. It breaks client connections and relies on recon-
nection to resume the NFS session after change of the storage
backend. NetKV [70] is an application-level load balancer for
memcached, but does not support TCP.

L4 load balancers. Maglev [14] and Ananta [56] are
software load-balancers implemented in commodity servers.
Duet [20], Rubik [18] and Faild [4] are similar, but partially
leverage standard hardware switches for improved perfor-
mance. Unlike Prism, none of these approaches support
request-granularity redirection. L4 load balancers are used to
distribute traffic between multiple frontends of the Prism or
proxy architecture.

Flexible packet processing. The Prism frontend might
resemble a packet forwarding system implemented as mid-

dleboxes, but it differs in that it does not forward packets but
hands off established TCP connections. Our software imple-
mentation on a programmable soft-switch uses mSwitch [29]
for performance and flexibility, and eBPF for protection, but
it can be other flexible packet processing frameworks. Re-
cent scalable hardware packet processing systems, such as
SilkRoad [51] and FlowBlaze [8, 58], enable Prism to scale
to a large number of flows and reduce the latency of switch
rule updates. Some vendors are implementing eBPF hardware
offloading [39], which accelerates our switch logic (Figure 5).

Caching, sharding and replication algorithms. Many
object placement algorithms for storage systems have been
proposed [7, 15, 40, 44]. Prism is a framework to implement
object storage systems with these algorithms without wor-
rying about communication with clients. In Section 5, we
experimentally demonstrated that Prism can be used to im-
plement replicated backends for load balancing and sharded
ones for capacity scaling. More sophisticated algorithms, such
as selective replication [44], will further improve the storage
utilization and performance.

High performance host storage stack with TCP/IP. This
class of work, such as Diskmap [49], ReFlex [42] and i10 [33]
for NVMe, and Decibel [53] and PASTE [31] for persistent
memory, could enhance Prism’s backends, and benefit from
Prism, because they encrypt or push data at higher rates than
traditional host storage stack.

8 Conclusion

As faster storage devices push data to CPUs and networks at
higher rates, it is important to scale-out these resources. We
built Prism, which combines the performance and resilience
of content-based routing approaches with the generality and
flexibility of a conventional proxy architecture. We demon-
strated that Prism can be used to build object storage systems
for the industry-standard S3 protocol over TCP and TLS, and
to implement partitioned and replicated backends for capacity
scaling and load balancing. Prism is based on a connection
hand-off technique that has been proposed in the past, but
we redesigned it to address practical problems with the pre-
vious systems, taking into account modern technology and
requirements across the network switches and today’s OS
kernels.

Future work will develop object storage systems with ad-
vanced data layout or load balancing algorithms, and further
reduce the overheads of the TCP/TLS connection migration.
Modern low-latency networking techniques based on efficient
stacks [68] or RPC designs [38] are a perfect fit in this space.
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