Paralog: Consistent Host-side Logging for Parallel Checkpoints

Steven W. D. Chien Kento Sato Artur Podobas
University of Edinburgh RIKEN R-CCS KTH Royal Institute of Technology
Edinburgh, United Kingdom Kobe, Japan Stockholm, Sweden
steven.chien@ed.ac.uk kento.sato @riken.jp podobas@kth.se
Niclas Jansson Stefano Markidis Micho Honda

KTH Royal Institute of Technology
Stockholm, Sweden
njansson @kth.se

ABSTRACT

Output-intensive scientific applications are highly sensitive to low
storage throughput. While existing scientific application stacks are
optimized for traditional High-Performance Computing (HPC) envi-
ronments with high remote storage and network bandwidth, these
assumptions often fail in modern settings like cloud deployment. This
is because the existing scientific application I/O stack fails to leverage
the available resources. At the same time, scientific applications
exhibit special synchronization and data output requirements that are
difficult to satisfy using traditional approaches such as block-level or
filesystem-level caching. We introduce Paral.og, a distributed host-
side logging approach designed to accelerate scientific applications
transparently. ParalLog emphasizes deployability, enabling support
for unmodified message passing interface (MPI) applications and
implementations while preserving crash consistency semantics. We
evaluate ParalLog across traditional HPC, cloud HPC, local clusters,
and hybrid environments, demonstrating its capability to reduce end-
to-end execution time by 13-26% for popular scientific applications
in cloud settings.

CCS CONCEPTS

* Networks — Cloud computing; * Information systems — Dis-
tributed storage.

KEYWORDS

Cloud Computing, High Performance Computing, S3, caching, burst
buffer, scientific applications, parallel IO

ACM Reference Format:

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano
Markidis, and Micho Honda. 2025. ParaLog: Consistent Host-side Logging
for Parallel Checkpoints. In ACM Symposium on Cloud Computing (SoCC
’25), November 19-21, 2025, Online, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3772052.3772212

1 INTRODUCTION

Scientific applications are essential for simulating complex physical
phenomena, such as weather forecasts, fluid dynamics, and chemical

This work is licensed under a Creative Commons Attribution 4.0 International License.
SoCC ’25, November 19-21, 2025, Online, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2276-9/2025/11.

https://doi.org/10.1145/3772052.3772212

KTH Royal Institute of Technology
Stockholm, Sweden
markidis @kth.se

University of Edinburgh
Edinburgh, United Kingdom
michio.honda@ed.ac.uk

reactions. They traditionally run on high-performance computing
(HPC) clusters, but also increasingly on the cloud. Industries, such
as automotive [2] and biomedical [51], often run simulations on the
cloud if they do not have access to in-house or commercial HPC
infrastructures. NIH centers in the US have utilized public cloud
resources during the COVID-19 pandemic to run scientific workloads
on an unprecedented scale [34]. Despite advances in computing
power with heterogeneous systems such as GPUs, managing large
data volumes remains challenging. Applications face throughput
limitations in both HPC and cloud environments, where storage
bandwidth may be scarce. Existing scientific application stacks
are designed for HPC clusters in terms of access methods and I/O
characteristics, and struggle to adapt to low-bandwidth environments.

Scientific applications are data-intensive and exhibit bursty net-
work output. Climate and weather simulations that study fast-moving
processes, such as cyclones, turbulence, and extreme rainfall [86],
generate a large amount of data for high-resolution results; combus-
tion or airplane flow simulations, where short-lived phenomena or
detailed postprocessing analysis could be missed if the output is
infrequent [6, 11, 20, 72, 90]. Output data are stored in a centralized
storage system for further analysis by the user. To absorb bursty
output, caching is essential to improve an application’s end-to-end
completion time, but existing approaches fail to achieve essential
properties, such as deployability across heterogeneous platforms and
crash consistency between the caches across the compute nodes.

ParalLog explores a new design point within distributed logging
systems by restricting the I/0 subsystem and workload (i.e., write-only
workloads with collective synchronization). We believe this is a trade-
off worth exploring because it enables a distributed log consistent
across all compute nodes. It satisfies all requirements that cannot
be achieved by traditional methods such as block-level writeback
caching [71], or file system journal [35]. The high-level architecture
of ParalLog resembles a design pattern found in modern cloud-native
databases that combine shared-nothing architecture to manage node-
local storage devices and shared-data architecture to store the primary
database in a disaggregated storage [5, 18, 22, 87, 95]. However,
focusing on scientific applications, ParalLog deviates from those
systems, providing inter-process consistency guarantee based on the
MPI-IO calls (§ 6.1 and § 6.5), specialized log management (§ 6.2),
and background, yet synchronized checkpointing (§ 6.3).

2 SCIENTIFIC APPLICATION OVERVIEW

Scientific applications typically consist of two interleaving phases:
the compute phase, where distributed processes perform parallel

https://doi.org/10.1145/3772052.3772212
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772052.3772212

SoCC '25, November 19-21, 2025, Online, USA

computation; and the output phase, where parallel processes dis-
tributed over the compute nodes, together, write the state of the
simulation into stable storage over the network. Once launched, they
partition and logically distribute the dataset to the processes across
multiple compute nodes, and repeat between those phases:

(1) The compute phase by applying mathematical operations to
local data, and communicate with others when needed, either
in a point-to-point (between two processes) or collective (all
processes participate, e.g., reduce) manner.

(2) After one or more iterations, the processes switch to an output
phase, in which the processes write their compute results into
the shared files typically hosted in remote storage. The shared
file is read by the user(s) for further tasks such as visualization,
as input for other applications, or to restart the job after a crash.

After all of the processes complete their remote writes, the
processes start another computation phase and repeat.

2.1 Storage Architecture

To support concurrent writes, the remote storage typically employs a
parallel file system (PFS), such as Lustre [80] and GPFS [68, 79].
Processes can access distinct parts of a file with little contention.
Traditional HPC systems deploy PFS as a subsystem. Public cloud
operators have enhanced support for scientific applications over the
last half-decade in response to the increased demand for them to be
run on the cloud. AWS introduced a new managed service, Amazon
FSx for Lustre [8], in 2018, because existing storage services, such
as Elastic File System, cannot handle parallel write requests issued
by scientific applications, and PFSes, including Lustre, are tedious
and error-prone for individual users to deploy and operate.

2.2 Programming Model

Scientific application processes communicate through the inter-
faces defined by the Message-Passing Interface (MPI) [31] standard,
which offers point-to-point or collective inter-process communica-
tion. An MPI library implements MPI, and popular ones include
Open MPI [84] and MPICH [1]. HPC operators and vendors typically
provide MPI toolchains (e.g., Cray Compiling Environment (CCE),
Fujitsu MPI, InteIMPI [40]) optimized for specific systems.

While MPI supports the multiple program multiple data (MPMD)
model, the common practice is to follow the single program multiple
data (SPMD) paradigm. The application is a single binary linked
to the MPI library and is launched on multiple nodes through an
MPI launcher or job scheduler like Slurm [94]. They then partition
the work using information such as the process ID and set up their
own parallelization schemes. MPI also provides a set of parallel
1/0O interfaces called MPI-IO, which coordinates the distributed
processes and issues POSIX I/O at each of those to ease parallel file
modification by multiple processes.

In the rest of this section, we illustrate the workflow using an
example of a climate modeling application with a data layout in
Figure 1a. The simulation domain (a global map) is divided into four
subarrays, each handled by a process on a separate compute node.
During computation, the processes apply mathematical operations
to local data and communicate with others when necessary.

During output, these subarrays are written to a shared file, rep-
resenting the full domain. Since the on-file layout (second row in

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

Figure 1b) differs from the in-memory domain layout (top row), data
must be reshuffled into large contiguous blocks to maximize storage
throughput and avoid scattered I/O (Figure 1c). MPI-10O facilitates
this by allowing each process to define a file view, mapping its local
subarray to the global file.

This is done using MPI_Type_create_subarray, storing the
result in viewtype. Each process computes its global_starts
(offset) and subarray_sizes based on its process ID. The processes
together open a file in shared storage (e.g., in /pfs) using MPI_-
File_open. This is known as a collective operation where all
processes must participate. In this example, process 0 writes a 4-
byte header with MPI_File_write_at (similar to POSIX pwrite).
Then, all processes collectively set their file view with MPI_File_-
set_view (using viewtype, which they created earlier), informing
MPI of their access region. Finally, they collectively write their buffer
(my_data) with MPI_File_write_all, letting MPI-10 handle data
reshuffling, and issue coordinated I/O requests. The file is then synced
and closed collectively.

2.3 File Consistency Model

MPI-IO defines the consistency semantics through collective opera-
tions such as MPI_File_sync. This is conceptually similar to £sync
but in a distributed manner. Unlike POSIX fsync, which is local
to anode, MPI_File_sync coordinates synchronization across all
processes, ensuring the remote file is in a consistent state even with
many writers. MPI-IO does not guarantee a remote file is updated
unless a MPI_File_sync or MPI_File_close is performed. There-
fore, it is the application’s responsibility to order any overlapping
write or read-after-write with collective synchronization. We refer to
this as the consistency point in the rest of this paper (denoted in red
in the figure).

In case of non-storage failure, such as application or node crashing,
the file may be corrupted if it has not been synced or closed. For
example, if a crash happens before sync in Figure lc, the state
of the file is unclear and thus corrupted. Even after a successful
synchronization, if further write operations and a crash happen
before the next synchronization or close, the file may again become
inconsistent. In this case, while previous data have been safely written
to remote storage, the new data remains in an uncertain state. This
makes rollback recovery impossible.

3 MOTIVATION

Existing cluster architectures such as PFS and communication li-
braries introduce many optimizations. However, deployment environ-
ment — such as on-premise HPC clusters and private cloud — differs
significantly, making many optimization assumptions unreliable.

3.1 Insufficient Bandwidth

A remote storage must provide the bandwidth required by an appli-
cation to minimize delay. Due to software overhead and imbalance
between components along the I/O path, remote storage can be
1000x slower than compute node’s memory bandwidth [85]. For
example, the astrophysics code CHIMERA [15] outputs one 160 TB
restart file! and one 160 TB analytics data per hour in a production

for restarting the simulation from the middle. Checkpoint-restart is the application’s
responsibility and must not be confused with the log checkpoint in this paper.

Paralog: Consistent Host-side Logging for Parallel Checkpoints

ProcO __

roc2

e

MPI_Datatype viewtype;
const char *header = “9x9\n”;

Communicate

int globalsize[] = {.., ..};
int subarray_sizes[]
int global_starts[] =

Proc1]
(a) Domain decomposition [19] of a | MPI_Type_create subarray(2,

Proc3
! globalsize, subarray_sizes,

1 global_starts, MPI_ORDER_C,

1 MPI_CHAR, &viewtype);

weather forecast application.

Compute Nodes

[%}[EJ[EJ {MPI_Type commit (sviewtype);
BT Local memory buffer ~——
/ Process 0 Process 2

e [|

Storage Server (PFS)

Process 1 Process 3

MPI_Offset offset = strlen(header);

‘
'

SoCC '25, November 19-21, 2025, Online, USA

iMPI_File_open (MPI_COMM_ WORLD, Node Node Node Node
: "/pfs/viewtype.txt", 1 0 2 3
MPI_MODE_CREATE|MPI_MODE_WRONLY, ~
MPI_INFO_NULL, &file); ' File
opened
if (rank == 0) ..
EMPIiFileiwriteiat(file, 0, header, /[j Data
! offset, MPI_CHAR, f written
[MPI STATUS IGNORE); ./
MPI_File_set_view(file, offset, MPI_CHAR, / Layout
viewtype, "native", MPI_INFO_NULL); ! defined
R B . Data
MPI_File_write_all(file, &(mydata[0]([0]), | written
local_num_of_ rows*loc_num_of_cols,
MPI_CHAR, &status); Remote
ST T e flush
File
closed

File View of Shared File

I consistency point
[Jindividual operation
I collective operation

(Header NN T | W | [W | [DS [[DO [[

(b) Data aggregation and output to
a shared file over the network.

(c) An example of an application using collective I/O to write subarrays to Figure 1a, together with a header.

Figure 1: Scientific application overview.

B C— Recv
5 1.5 C— Send = -
3
iy
o0
g
=
[—1
100 — ——— 5 5 5
<
o 50 i
@]
| [l | | | | | |
100 150 200 250 300 100 150 200 250 300
(a) Neko Time [s] (b) iPIC3D

Figure 2: Inter-node network (top) and CPU (bottom) usage of
Neko and iPIC3D with output every minute captured on one
node (out of 16). Usage of those drops during transfer to remote
PFS (see § 4).

environment [49]. To minimize the burst of 320 TB, it requires
320 TB/s = 2,560,000 Gbps from the PFS. Even PFS on large-
scale systems with a large number of backends can fall short of the
bandwidth requirement. The periodic bursty output of scientific ap-
plications [54, 61, 65] can also be observed in other output-intensive
workloads, such as ML training, where the checkpoint frequency is
limited by bandwidth [62].

3.2 Platform Mismatch

Deploying a private shared file system on a cloud-based cluster
takes considerable system administration effort. For this reason,
cloud providers have increased support in recent years and offer
managed PFS services, such as FSx for Lustre [8] by AWS, and
Azure Managed Lustre [10] by Microsoft. However, these systems
scale storage and bandwidth by capacity, costing $12—77.37 per
TB per month (FSx for Lustre). To achieve high throughput, the
application must over-provision storage space. In our case study

(§ 4), eliminating one of our application’s output bottlenecks requires
nearly 9x more PFS bandwidth, resulting in significantly higher cost
and unused storage space. Furthermore, managed PFS is privately
provided — unlike HPC PFS, which is time-shared by many users,
rendering optimization such as I/O forwarding [3, 44] ineffective.

3.3 Operational Mismatch

Managed PFS and cloud instances are private without other users and
billed by the hour, leading to wastage if the bandwidth is not constantly
used by the application. Techniques such as asynchronous 1/O (e.g.,
libaio) can sustain usage, but suffer from overheads [24, 32, 46],
constraints such as no buffered I/O, and increased memory usage.
Most importantly, asynchronous I/O does not provide persistence
because it uses memory as a buffer. Therefore, it is unsuitable for
critical tasks such as checkpointing an application’s state. While
cloud spot instances offer steep discounts (e.g., AWS spot instances,
up to 70% cheaper than on-demand), they risk being recalled with
short notice (e.g., 30 seconds), making asynchronous I/O risky.
Additionally, the applications’ shared-file output pattern makes it
difficult to adopt cloud-native alternatives like object storage.

4 CASE STUDY

We now present a case study of scientific applications that simul-
taneously suffer from the above issues (§ 3). We set up a private
cloud cluster on AWS using the AWS ParallelCluster tool [7], with
16 compute nodes using r5.4xlarge EC2 spot instances. Each is
equipped with 16-core Xeon Platinum 8000 vCPU, 128 GB of RAM,
and up to 10 Gbps network. We use FSx Lustre as the cluster file sys-
tem, allocating 6 TiB (minimum required) with HDD storage, giving
up to 1.92 Gbps network bandwidth. Our setup costs approximately
$398.44 per month.

We test two applications: the first is Neko [42, 43, 45, 70, 78], a
highly-scalable spectral-element code; and the second is iPIC3D [26,
39, 57, 58, 60], a space weather application widely used to study
space plasma and magnetic reconnection events. Both applications
alternate between blocking compute and output phases, outputting

SoCC '25, November 19-21, 2025, Online, USA

— 2 T T
_§ . [OR
o, LS e -
AN —— N B]
2
S 0.5 -1
=
=
20
2 3.75 7.5 15 30 60 120
File size [MiB]

Figure 3: Throughput of AWS FSx for Lustre (§ 4).

data approximately every minute. During an output phase, the parallel
processes coordinate to write their data into a shared-file. We sample
the CPU and network usage on one of the compute nodes, as shown in
Figure 2. iPIC3D generates dozens of small output files (30-90 MiB)
per output, whereas Neko writes one single large file (2 GiB) per
output.

Insufficient bandwidth. While both applications exhibit high CPU
usage when computing, they become periodically idle. This is because
our setup does not provide sufficient bandwidth. For example, Neko
requires 2 GiB/s = 17.18 Gbps, but our managed PFS only gives
1.92 Gbps, leading to a slowdown. This corresponds to a period of
low network usage where Neko achieves 1.82 Gbps during output
(0.11 Gbps per node, Figure 2:a). iPIC3D only reaches 0.37 Gbps
(Figure 2:b), because it writes small files and cannot effectively
exploit the PFS’ bandwidth. We validate this in Figure 3 by writing
files of different sizes using the IOR benchmark tool [81].

Platform and operational mismatches. Eliminating Neko’s output
bottleneck requires nearly 9x more PFS bandwidth, resulting in
significantly higher cost and unused storage space. Since the storage
bandwidth is not used during computation, it leads to wastage.
Without explicit modification to the application, it is impossible to
perform asynchronous 1/O.

5 DESIGN SPACE

Our example with scientific applications (§ 4) highlights the chal-
lenges in deploying applications in a heterogeneous cluster envi-
ronment. We argue that the fundamental problem is not bandwidth
scarcity, but poor utilization. A more practical approach is to transpar-
ently buffer data in local persistent storage before spreading remote
transfer to the next compute phases [75]. Its impact on the network
during compute phases would be minimal, as the bottleneck is on
the remote storage. As Figure 2 shows, there is little network usage
during output as opposed to the compute phase.

5.1 Hierarchical Local Storage

Traditional HPC systems provide local storage via burst buffers, either
as node-local SSDs (e.g., Summit [63], Frontier [64], MareNostrum
5 [16]) or near-node storage over dedicated networks (e.g., Cray
DataWarp [37], LLIO [28, 76], Rabbit on El Capitan [56]). Similarly,
clouds offer virtual block storage (e.g., AWS EBS) with dedicated
bandwidth.

Using EBS is cost-effective because the bandwidth of an EBS is
independent of its size. For example, AWS’s gp3 EBS provides a

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

base bandwidth of 125 MB/s regardless of volume size ($0.0836/GB-
month), whereas our managed FSx Lustre gives 125 MB/s per
allocated TiB ($0.151/GB-month). Furthermore, cloud instances
already require local block storage to store the operating system —
with space not used by the applications. This means that the total
bandwidth can scale by the number of compute nodes used, rather
than being tied to allocated storage space.

To facilitate applications that write shared files?, some burst buffers
provide a job-local shared-file system mode (e.g, LLIO, Datawarp);
while tools like UnifyFS [13], GekkoFS [89], and BurstFS [92],
aggregate node-local storage into temporary shared file systems.

Burst buffers are designed for temporary data (e.g., keeping
temporary results in MapReduce [23]). They are terminated after job
completion and do not persist data to remote storage. As a result,
Bez et al. report that 85-98% of jobs in production HPC clusters still
rely on PES as of 2020 [12], citing limited tooling and data staging
complexity. Despite this, over 90% of production files are read- or
write-only with rare read-after-write [91], indicating the potential
for write-only workload optimization.

5.2 Caching

Node-local storage (e.g., provided by burst buffers or EBS) can
instead be used as a cache to support data staging. However, there
are significant deployment and usability challenges. Transparent
caching, such as the block-level write-back cache [47, 71], is not
suitable for shard-file I/O as it is complex to reconstruct file-level
semantics remotely. File system cache approaches such as Arion [35]
and LPCC [69] require intrusive kernel and metadata server changes,
making them unsuitable for cloud-managed PFS. Furthermore, they
struggle with metadata consistency in shared-file I/O. Sympho-
nyFS [63] is a writeback cache which is exposed as a FUSE file
system [88]. It starts transferring data from the local cache to the stor-
age server before the application calls sync to reduce the data transfer
that blocks the caller at the eventual £sync command. Although
this approach would work when high remote storage bandwidth is
available, as SymphonyFS was designed for HPC platforms, it is
inefficient for a cloud environment where the remote storage band-
width is very slow or expensive. We experimentally validate this in
§ 8.5.

Caching via I/O forwarding nodes [3, 44] of a PFS requires tight
cluster integration, which is unsuitable for small-scale or managed
deployments. While it is possible to build them with extra compute
instances, this adds cost and underutilizes local resources. Further-
more, I/O forwarding-based optimizations assume a time-shared
PFS common HPC with many users, but not in a private cloud
environment.

5.3 Heterogeneous Storage

Cloud-based PFS lacks elasticity (e.g., the size of FSx Lustre cannot
be reduced) and is expensive to deploy. For example, FSx Lustre
costs $76.25/month for 6TB HDD, $92.84/month for 1.2TB SSD,
and $1,742.44/month for 1.2TB of AWS File Cache. In contrast,
cloud-native object stores like AWS S3 are far cheaper at $0.023/GB
(1.2TB costs $27.60/month), highlighting the platform mismatch. S3
is reliable, cost-efficient, and widely adopted — even in traditional

2N-1, i.e., N processes writing one file, as opposed to N-N with file-per-process

Paralog: Consistent Host-side Logging for Parallel Checkpoints

HPC centers, providing 25% of storage for the Lumi system [21],
and 11 out of 54 data repositories in CERN [59]. If applications can
use S3, they can completely bypass a slow NFS [66], a tedious and
error-prone self-hosted PFS, or an expensive managed PFS.

While S3 offers accessibility [48], its performance and semantics
differ from POSIX. For example, objects are immutable and atomic,
with no support for ranged writes. Therefore, applications that expect
a file system have to be significantly re-engineered, from the com-
munication library to data layout (e.g., to use AWS SDK [9]). Tools
like s3mount [52] and s3fs [74] expose S3 as a file system but lack
multi-writer, shared-file support and cross-node coordination, which
causes issues in direct usage. For example, PyTorch encountered
non-reproducible errors due to unmet metadata consistency guaran-
tees [73]. Tool such as libCOS [4] enables S3 usage with MPI-10,
but it outputs data in custom-formatted chunks that are linked by a
YAML file — not respecting the requested data layout. This makes
data dissemination — a strength of using S3 storage — impossible.

5.4 Data Safety

The ability to recover unflushed data is crucial for cloud-based appli-
cations so that they can exploit low-cost spot instances. Fortunately,
cloud block storage, like EBS, is reliable and detached from instances,
with failure rates as low as 0.1-0.2% [14].

However, burst buffer file systems like UnifyFS lack crash recov-
ery [55]. File system cache, such as SymphonyFS [63], ensures data
safety by blocking at fsync until the remote flush is complete. This
implies SymphonyFS cannot provide overlapping and crash recovery
at the same time. In fact, its benchmark in Ref. [63] does not issue
fsync during iterations except the last, thus giving no consistency
guarantee (§ 8.5).

5.5 Deployability

Visibility to application-level synchronization is important as it
gives consistency points. Therefore, one approach is to directly
implement caching in a communication library — MPI — for the
case of scientific applications. Explicit modification of an MPI
library [83] is transparent to the application but poses significant
deployment challenges due to the variety of MPI implementations,
including closed-source and operator optimized ones (e.g., Intel
MPI, Fujitsu MPI, Cray Compiler Environment). Deploying Paral.og
as a separate MPI library results in users losing access to vendor-
optimized libraries, creating a significant barrier.

6 PARALOG DESIGN

In each compute node, Paralog redirects write commands intended
for a shared file backed by the remote file system (§ 2.1), to the
node-local storage. Each node uses its own local storage, enabling
interference-free, exclusive write bandwidth. Those writes are per-
sisted and versioned locally upon an inter-node synchronization
operation (e.g., MPI_File_sync) from the application. The Paral.og
data structure is snapshot aware, meaning it supports applications
using any synchronization methods, not just MPI. After synchroniza-
tion points, a snapshot of the remote shared-file can be reconstructed
using node-local data on every node. This is an important design
decision, as it enables the next compute cycles immediately without
completing data transfer, and still supports crash recovery.

SoCC '25, November 19-21, 2025, Online, USA

6.1 Crash Consistency Model

ParalLog preserves the crash consistency expected by ordinary parallel
applications (§ 2.3), assuming reliable local storage (§ 5.4) and no
storage failure. Remote storage failure follows the same model. To
define an inter-process consistency point, ParalLog relies on an /O
library that synchronously issues I/O requests across all the processes,
such as MPI-10.

If a failure happens after a consistency point, the background
checkpoint process may be interrupted. However, the checkpoint can
be rerun after all the instances are restarted, as all nodes preserve the
previous snapshot. This resembles a log redo operation, where logs
are replayed after recovering from a crash. In fact, Paral.og provides
even stronger crash consistency than direct PFS usage because it
only checkpoints a versioned snapshot after a consistency point. Any
post-crash writes remain in the Paral.og log as an incomplete record,
leaving the remote file uncorrupted.

6.2 Local Data Management

Sequential segment files. ParalLog keeps data that constitutes a
contiguous chunk within the logical remote file in a file backed by
a local SSD, which we call a segment file. A segment file encodes
immutable information, including the remote-file offset and version
number (which we call epoch) that identifies the current cycle, in
its file name. This is essential, as we will show later, it preserves
consistent data snapshots when the application synchronizes or closes
the file. Furthermore, fine-grained logging enables flexible remote
storage, even non-POSIX ones to be used. Paral.og translates a
POSIX I/O syscall (e.g., write) based on its file descriptor and
offset. When ParalLog captures a write, it first checks whether it
is contiguous from one of the existing segment files. If it is, that
segment file is extended; otherwise, a new segment file is created.
Therefore, a remote-file offset is only covered by one file.

In-memory segment table. ParalLog maintains an in-memory table
that records the names, offsets, and lengths of segment files it
created for the same eventual remote file. This table is organized
into associative containers (C++ map) sorted by the offset so that
ParalLog can quickly search for an existing entry when a write
command arrives. ParalLog also tracks the current offset in the
eventual remote file, because the process can overwrite a part of
the existing or current segment file after seeking back the offset.
Our current implementation only keeps one segment file active (i.e.,
open f£d). When a new segment file is created or one of the existing
inactive segment files is extended, Paral.og closes the current one.

On-disk manifest file. Upon a sync command (e.g., £sync), Para-
Log closes any active segment file, creates a manifest file to store the
in-memory segment file table, and persists the manifest file itself. At
this point, it is ensured that all the segment files and their metadata
(offsets and lengths in the eventual shared file) are durable and con-
sistent. Because this is coordinated by a higher level synchronization
(e.g. MPI_File_sync), the file state is consistent across all nodes.

Write reconciliation. While unusual, overlapping writing can
occur, e.g., when an application wants to adjust a header value [91],
commonly with I/O libraries such as HDF5 [12, 27, 91]. The MPI-
IO standard stipulates linear consistency within a single process.
ParalLog’s data structure supports this by scanning the in-memory

SoCC '25, November 19-21, 2025, Online, USA

segment table and reusing existing segments. Overlapping segments
can be detected (i.e., overwriting the next segment’s starting offset)
by checking their offset and sizes. The overlapped head of the next
segment can be eliminated by an in-place and forward memmove
of the data, followed by a ftruncate. The segment file name is
renamed to reflect its starting offset, and the in-memory table needs
to be updated.

6.3 Checkpoint

Each node runs a checkpoint server in the background and monitors
the creation of manifest files, which can be detected by Linux
inotify or BSD kqueue, to transfer the local data to the remote file.
Upon signal activation, they read the manifest files, the segments,
and write data remotely using regular storage APIs. For example,
the checkpoint servers can use MPI-10O to reconstruct the remote file,
potentially triggering another round of aggregation for even more
contiguous chunks. Since on-disk logs are versioned using the epoch,
consistency points do not overwrite each other. Local data is only
erased when a remote file has been successfully written.

Some remote storage backends, such as S3, lack a POSIX interface.
The current ParalLog implementation directly uses AWS S3 SDK,
decoupling data interposition and remote checkpoint. The checkpoint
server uses S3 multipart upload for parallel upload, but S3 does
not use byte offset semantics and requires the parts to be perfectly
aligned. This is problematic if segments are not contiguous (i.e.,
having holes), or too small (i.e., S3 requires >5 MiB per part).

ParalLog remedy this by writing segment data with MPI-10 through
ParalLog again to trigger aggregation for larger and perfectly con-
tiguous chunks. The leader server initializes an upload request and
distributes the ID to other servers. Each server uploads its chunks
and sends confirmation data (e.g., hash) to the leader. Finally, the
leader issues a complete upload request to persist the S3 object.
If aggregation fails to produce contiguous segments, all processes
send their data to the leader (process zero), which performs a single
upload.

In our current implementation, the checkpoint process reads the
data from the local disk and writes it back to the network socket, so
additional memory usage and copies happen. If this is a concern,
they could be eliminated easily using, e.g., sendfile(2) or copy_-
file_range(2), instead of MPI-IO.

6.4 Crash Recovery

If a checkpoint is interrupted, it can simply be restarted like a log
redo, as the logs are not removed until a successful checkpoint. Since
the workflow is equivalent to a remote write using regular MPI-1IO
or other storage APISs, the performance expectation is equivalent.

6.5 MPI-IO Augmentation

ParalLog supports unmodified scientific applications that use the
MPI-IO interfaces for inter-process communication and storage 1/0
(§ 2.2). Because of this, it extends generality to also support I/O
libraries that are built on top of MPI-IO, such as HDF5 [27] and
NetCDF [53].

Since those applications do not directly call POSIX syscalls, such
as open and write, one would build a new fully-fledged MPI-10
library that performs the data management described in § 6.2 behind

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

-
1 libparalog.so

MPI_File open/sync/close () ‘

MPI_File open/sync/close () ‘

‘ open () ‘ ‘ lseek () ‘ ‘ seek () ‘
‘ fsync () ‘ ‘ write () ‘ ‘ pwritev () ‘
‘ close () ‘ ‘ pwrite () ‘ ‘ ‘

|:| ParaLog augmentation I:l Unmodified MPI library

Figure 4: Design of Paral.og runtime library that augments
MPI-IO behavior through preloading selected functions (§ 6.5).

the standard MPI-1O interfaces. However, this approach is not viable,
because it requires implementation of the full MPI-1O abstraction
layer, including read functions, which is out of the scope of Paralog.
More importantly, many scientific application deployments opt for
platform-optimized, proprietary MPI-IO libraries whose source code
is unavailable to the user or operator. If we sacrificed the choice of
the MPI library, the use of Paral.og would be a huge burden for users.

ParalLog therefore augments the existing, unmodified MPI-IO
library as in Figure 4. It intercepts the MPI-IO calls that define
inter-process consistency points across the compute nodes, which
are MPI_File_open, MPI_File_sync and MPI_File_close, by
preloading. ParalLog also intercepts POSIX syscalls issued by the
MPI-IO library to manipulate the segment files and segment tables
discussed in § 6.2. When MPI_File_open issues the POSIX open,
which is preloaded, Paralog returns a placeholder file descriptor to
the MPI-IO library.

Since the MPI-IO library uses this descriptor for all the further
syscalls on this file, Paral.og can identify the syscalls originated by
MPI-IO. To ensure that the placeholder descriptor number is unique,
ParalLog opens a temporary file to obtain and occupy this number
and maintains it in a hash table.

Importantly, ParalLog only intercepts MPI_File_open and the
subsequent open call that matches a path prefix provided by the user
through an environment variable, and opened in write-only mode.
ParalLog would not interfere with any other file operations, or those
issued by itself.

6.6 Implementation and Deployment

The ParalLog preloaded library, checkpoint server, and recovery tool
consist of fewer than 1.5k LoC of C/C++ code. We validated that
ParalLog can be used with the following unmodified popular open
source MPI libraries: Open MPI, MPICH, ParaStation MPI; and
closed source ones: Cray MPI, Fujitsu MPI, Intel MPI. In addition
to preloading the ParalLog library and setting relevant paths, the
checkpoint server must start in the background with one server per
node, specifying a remote checkpoint location. The code is available
on a repository?® which can be installed using Spack [29]. Since
ParalLog uses Linux’s preloading, it does not modify or reverse
engineer any closed-source binaries. Using the Paralog library itself
does not create a license issue, as linkage to the application is not
required.

3https://github.com/uoenoplab/ParaLog.git

https://github.com/uoenoplab/ParaLog.git

Paralog: Consistent Host-side Logging for Parallel Checkpoints

SoCC '25, November 19-21, 2025, Online, USA

Application In-memory data On-local-disk data Eventual shared file
£ = ‘/local/file.vtk’ Mrl‘ﬁle entryﬂ fofsffilevtk ,
MPI_File_open(f, ..) PLFD | MPI L€ Name | ~ O O Hash table ! :
20 = open (f) 20 /local/Fllle‘vtk ------------------
MPI_File write_at Segment table I Open MPI Epoch | Segment files
lseek (20, 0, SEEK_SET); Off | Segment file name |Len off /Jlocal/file.vtk.0.0 /pF_s/_Fi_le;-._/t_k __________
write (20, buf, 4); 0 /local/file.vtk.0.0 4 |< [4] @ “““““““““““ ’D ________________ i
MPI_File_write_all
1seek (20, 4, SEEK_SET); /local/file.vtk.0.0 fpfsffilevek . .
write (20, buf, 9); [0 [Jiocaffilentco0 | 13 &= [13][0] | b=~ o I :
MPI_File write all Jlocal/file.vtk.0.0 fpfs/filevek .
@ 1seek (20, 40, SEEK_SET);|[0 [/localffilevtk.0.0 | 13] . [:I D___:
write (20, buf, 9); [40 | /localffilentk.0.40 | 9 K [o] /local/ﬁle.vtk.o.4_0 ______________________ -7
MPI_File write at /local/file.vtk.0.0 /pfs/file.vtk
1seek (20, 2, SEEK SET); | [0 | /localffilevtk.0.0 [13 ki [:I _________ D ___‘:
write (20, buf, 2); [40 | /localffilevtk.0.40 | 9 | [0] | focalffilevtkoo |
MPI_File sync /local/file.vtk.0.0 /pfs/file.vtk
Cevnc (2 LEIMERE [I
@ fsync (20) ; [;I _________ ___:
/local/file.vtk.0.40 I :
Manifest /’ /,
/local/manifests/file.vtk.0 L/ o
| 0 [/localffilevtk.0.0 | 13 K Pl
MPI File close | 40 | /localffile.vtk.0.40 | 9 ok @Data transfer
f e |
$ poeas > < g {:}CZ@:>

Figure 5: Logging operations triggered by application calling MPI-IO functions, and their underlying POSIX I/O functions. ParaLog
only captures MPI_File_open, MPI_File_sync, and MPI_File_close for consistency points, and POSIX I/O functions for data and

file pointer operations (§ 7).

7 PARALOG IN ACTION

ParalLog is activated by preloading (LD_PRELOAD) an augmented
library and pointing to the file path to the local SSD while keeping
the remote file name. Those are set in environment variables. In this
section, we detail how ParalLog’s data management works, referring
to Figure 5.

@ Open an eventual shared file. When the application opens (MPI_-
File_Open) a new eventual shared file (file.vtk), but specifying
prefix /local, the MPI implementation issues POSIX open on
that path. ParalLog intercepts this open if it is in write-only mode
and the prefix matches with the environment variable, returning a
placeholder descriptor (£d=20). ParalLog registers it to the hash table
that maintains the MPI-file entries and the segment table is initialized
(§ 6.2).

@ First write. Consider the application calls MPI_File_write_at
to write data at a specific position in the target file (executed by
an individual process). MPI_File_write_at first 1seek to 0, then
write 4 bytes of data. Paral.og intercepts those calls as they are
issued on the placeholder £d (20). When Paral.og sees 1seek, it
records the specified offset (MPI off in the figure). When Paral.og
sees write, since there exists no segment table entry, it opens a new
segment file, /local/file.vtk.0.0, and stores the written data.

Note that POSIX calls issued by ParalLog itself are not intercepted.
ParalLog then updates the offset (again MPI off in the figure) to 4,
as 4 bytes of data have been written at offset 0. Paral.og records the
remote offset, name, and length of this segment file in the segment
table.

@ Contiguous write. The application then calls collective MPI_-
File_write_all, where every process issues a write at a position
specific to each of them. The MPI implementation 1seek the offset
to 4, followed by write with 9 bytes of data. Since the seek offset
matches the current one that was updated by the previous write,
ParalLog appends 9 bytes of the data to the existing segment file and
updates the length field of the segment table entry and the current
offset (MPI off) to 13.

@ Discontiguous write In another MPI_File_write_all, con-
sider that the process moves the MPI-file offset to 40 and writes
9 bytes of data. This is discontiguous from the last write position,
which is 13, and there is no other segment file that this write can
extend. ParalLog closes the currently open segment file and creates
a new one /local/file.vtk.0.40. A new segment table entry
is inserted to record this segment file name and offset (i.e., 40), as
well as updating the current offset (MPI off) to 40 (which is further

SoCC '25, November 19-21, 2025, Online, USA

updated to 49 after write). Paralog then writes the data to the new
segment file and updates the length field of the segment table entry.
@ Overwrite. The MPI implementation then writes 2 bytes of data
at offset 2. Since this position is inside the existing, inactive segment
file (file.vtk.0.0), Paral.og closes and persists the current open
segment file and reopens that one. It then sets the offset to 2, writes
2 bytes of data, and updates the current offset to 4. Note that this
write does not update the length field of the segment file entry.
@ Sync. When the application calls MPI_File_sync, Paral.og
persists the active segment file (/local/file.vtk.0.0). It then
creates a manifest file, /local/manifests/file.vtk.®. This file
records the name, offset, and length of the two segment files that
have been created over the epoch. The manifest file is then persisted,
which is detected by the checkpoint server (§ 6.3). Finally, ParalLog
updates the epoch.

@ Data transfer The checkpoint servers on each node pick up the
signal when a manifest file (/local/metadata/file.vtk.0) is
committed to local storage. They parse the manifest, read segment
files into memory, and collectively reconstruct remote data. If PFS
is used, the servers use regular MPI-IO to describe layouts and
write data. The segment /local/file.vtk.0.0 is written to byte
0-13, and /local/file.vtk.0.40 to byte 40—49 in the remote
file (/pfs/file.vtk). If S3 is used, the servers perform the same
operation but use /local rather than /pfs as the output target.
This triggers a further aggregation of segments and output through
ParalLog. The output file name is munged with a suffix (e.g., #FOR_-
S3#) to avoid overwriting the consistency point. The servers send
their re-aggregated segment offsets and lengths to a leader. The leader
sorts and verifies that all segments are contiguous and distributes
part numbers back to them. For example, /local/file.vtk#FOR_-
S3#.0.0 gets assigned part number one. The servers proceed to
upload the segments individually and send confirmation information
to the leader. Finally, the leader issues a completion request, and the
S3 object is persisted. Local segment and manifest files are cleaned
up after all the servers have completed their transfer.

Close. When the application closes the shared file, ParaLog
deletes all the in-memory data. However, data transfer to the remote
storage can still be in progress; the checkpoint server is responsible
for deleting the segment files and manifests. This is because all the
logs required for reconstruction persist on the nodes’ local storage.

8 EVALUATION

To demonstrate the wide applicability of ParalLog, we use five systems
(Table 1) to evaluate different aspects of ParalLog. We reserve one
core per node to run the checkpoint server and use the rest for the
application®.

8.1 Traditional HPC Systems

How does ParalLog perform in traditional HPC systems? We use two
HPC clusters. The first is Vega [41], which is a petascale supercom-
puter with AMD CPUs and NVMe SSDs. The system is accessible to
expert researchers in Europe to run scientific workloads that include
fluid dynamics, astrophysics, and ML. The second is NextgenlO [67],

“Whenever Lustre is used, we set a stripe count of -1 to ensure all the storage backends
are used. For local storage, we use XFS and ext4 on HPC systems; ext4 on on-premise
cluster and for ramdisks.

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

which is an early-stage HPC system with Intel CPUs and Optane
Persistent Memory storage on each node to support data-intensive
applications. We use Neko as the application because it can easily
scale to arbitrary numbers of cores without altering decomposition
schemes between those clusters. Neko exhibits alternating compute
and checkpoint phases, as many other scientific applications (§ 4).
Figure 6 plots the end-to-end job completion time with a strong-
scaling (fixed problem size) setting. Paral.og has little effect on
two nodes because of little storage or network contention. From
4-16 nodes, ParalLog outperforms the baselines by a larger margin
with increasing output frequency. For example, when the application
outputs every 20 cycles, we observe 36.6—64.3% improvement in
Vega and 16.5-17.5% in NextgenlO; when doing so at every 4
cycles, 58-90% in Vega and 33—-44% in NextgenlO, depending on
the number of nodes. ParalL.og achieves better improvement on Vega
than NextgetlO, because it experiences more PFS contention in the
former. We conclude that our results show that ParalLog effectively
caches write operations of individual nodes and spreads remote
storage writes over compute phases in traditional HPC clusters.

8.2 FSx for Lustre in Public Cloud

How does Paral.og accelerate scientific applications executed in
public clouds? We run Neko and iPIC3D on the AWS cluster setup
described in § 4, and Figure 7 plots the results. Similarly to the HPC
clusters used in the previous subsection, Paral.og reduces the end-to-
end job completion time by a larger margin with increasing output
frequency in Neko (2.5-40%) and iPIC3D (6.8-38.6%) with Intel
MPI. We also observed similar results with Open MPI, improving
4.86-58.14% in Neko and 3.7-68.7% in iPIC3D. Paral.og reduces
required throughput by spreading remote PFS writes to avoid bursty
bandwidth demand.

Without ParalLog, iPIC3D exhibits a longer idle period between
compute cycles (Figure 2) because it generates many smaller files
that cannot exploit PFS bandwidth. Therefore, Paralog alleviates not
only network bandwidth shortage (Neko) but also storage bandwidth
shortage (iPIC3D).

8.3 S3 Backend

Without ParalLog, users are expected to first write data to PFS using
regular MPI-IO and then upload it to S3 using a tool like s3cmd.
To the best of our knowledge, ours is the first work that examines a
fully-fledged MPI-IO application that directly writes data to S3 in a
production HPC system.

We first run Paral.og with Neko on Lumi, scaling up to 32 nodes.
Since Lumi compute nodes are diskless, we use a ramdisk (backed
by ext4) for logging, thus providing no crash consistency in this
experiment. In Figure 9, ParalLog is slower than PFS for infrequent
outputs (20 or more cycles per output) but outperforms PFS with
more frequent outputs, achieving up to a 28% reduction at four cycles
per output.

In applications such as weather forecasts, computation results are
distributed to remote users as soon as they are available. To explore
Internet dissemination, we run iPIC3D and WRF on ICSY, check-
pointing data to Spaces Object Store>. WRF [82] is a widely used

5An S3-compatible cloud storage hosted by Digital Ocean, approximately 112 MiB/s for
upload, measured using warp https://github.com/minio/warp from one node.

https://github.com/minio/warp

Paralog: Consistent Host-side Logging for Parallel Checkpoints

Table 1: Evaluation setup.

SoCC '25, November 19-21,

2025, Online, USA

System CPUs and Total Cores per Node RAM | Node-Local Storage Baseline Cluster Storage | Network Toolchain

Vega 2x EPYC 7H12 (128 cores) 256GB | Micron 7300 1.92TB Lustre InfiniBand HDR | Open MPI, GCC

NextgenlO 2x Xeon Platinum 8260 (48 cores) 192GB | NVDIMM AppDirect 3GB Lustre Omnipath Open MPI+GCC

Lumi 2x EPYC 7763 (128 cores) 256GB | Ramdisk (diskless) Lustre, Lumi-O (S3) Slingshot-11 Cray MPICH+CC
. . Intel MPI+ICC,

AWS cluster (16 nodes) | Xeon Platinum 8000 vCPU (16 cores) | 128GB | Elastic Block Storage 125MB/s | FSx Lustre Up to 10Gbps Open MPL+GCC
. NFS, Intel MPI+ICC,

ICSY (5 nodes) 2x Xeon Silver 4314 (32 cores) 128GB | Samsung PM9A3 NVMe SSD Digital Ocean Spaces (S3) 25Gbps Ethernet Open MPI+GCC

EZZZA Baseline (2 nodes) CZ——1 Baseline (4 nodes) C—1 Baseline (8 nodes) (Z2223 Baseline (16 nodes)
I Paralog (2nodes) EEE20 Paralog (4 nodes) BB Paral og (8 nodes) HEEEE Paral og (16 nodes)
2000 T T T T T T
1500
i)
()
g 1000
=
500
0 M 5 M (. M ; |
200 100 40 20 10 5 200 100 40 20 10 5 4
(a) Vega i cyCIeS / output (b) NextgenlO
Figure 6: End-to-end completion time of Neko on HPC systems (§ 8.1) (up to eight nodes for NextgenIO).
3000 T T T T T T
[ESZA Baseline (IntelMPI) 5
= ParaLog (Inte]MPI) 3
o 2000 |- EEZZdBaseline (OpenMPI) o =
‘: [ParalLog (OpenMPI) 5
= ;
= 1000 |- ’_ﬂ E . —‘
0 T T :

200 100 40 20 10
(a) Neko

280 140

4
cycles / output (b) iPIC3D

Figure 7: End-to-end completion time on AWS cluster (§ 8.2).

weather forecast code that writes NetCDF [53] files periodically [38].
We use the 12km variant (approximately 500 MiB per output), due
to the limited space (which we can afford) of S3. We compare the
performance of S3 output cases against using an NFS server which
connects to ICSY over a 25 Gbps link (§ 8.4).

Figure 8:b,d (Baseline and Paral.og-S3; we will discuss Paral.og-
NFS in the next subsection § 8.4) show the results where output to
S3 exhibits comparable performance to outputting directly to NFS,
despite each node in ICSY is connected to the Internet through
a 1 Gbps link. Our results demonstrate that Paralog efficiently
utilizes low network bandwidth, allowing new workflows where
scientific applications decouple computation from the storage, even
geographically; and enabling users to instantly access output stored
in ordinary cloud storage.

8.4 NFS Backend

Inspired by previous experiments, some users might prefer to use
ordinary NFS, especially in existing clusters that already deploy it. To

test this scenario, we use ICSY with five compute nodes. Figure 8:a,b
plot the results, in addition to ParalLog-S3 which was discussed in
§ 8.3. At the highest frequency, Paral.og reduces the end-to-end
completion time of Neko by 44-49%; and iPIC3D by 27-31%. As
with AWS cluster, ParalLog gives little or no benefit at very low
frequency.

We also run WREF. In addition to the small 12km variant (same
as the previous subsection), we run the larger 2.5km variant, which
writes approximately 8 GiB per output. Figure 8:c and Figure 8:d
show that ParalLog achieves improvement of 11-49% with Intel MPI
and 8-54% with Open MPI, depending on the output frequency.

Our results show that Paral.og can accelerate end-to-end job
completion time over a wide range of output frequencies (in best
cases, up to 58% and 68% for Neko and iPIC3D, respectively).
Notably, Paral.og achieves compute-output overlapping irrespective
of MPI implementations in both HPC, on-premise clusters, and the
cloud, demonstrating its wide applicability.

SoCC '25, November 19-21, 2025, Online, USA

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

Baseline (IntelMP]) BB Paralog-S3 (IntelMPI) C—— ParaLog-NFS (OpenMPI)
=3 ParaLog-NFS (IntelMPI) C—1 Baseline (OpenMP]) BB Paral og-S3 (OpenMPI)
2000 T T T T T T T T T T T T —
1500 - R 1000 [=++++vvvvreees s g B
1000 |- SR ETRRER RTREE [et AR -
500 |-
500——”” H H H ” H H H—-
CO oL—H 2
o 200 100 40 20 10 5 280 140 56 14 7 5
g
= (a) Neko # cycles / output (b) iPIC3D
10000 T T T T T T T T T T T T
8000 [~+crrmrestensmmmsr s B -1 1000 [+
6000 - .
4000 [~ R 1 ¥ ~ 500
2000 ~ X : X .
<])
0 60 50 40 30 20 10 . 60, .50 40 30 20 10
Output Interval [timesteps in minutes]
(c¢) WRF US Continental 2.5km (d) WRF US Continental 12km
Figure 8: End-to-end completion time on ICSY (§ 8.3 and § 8.4).
lgaselljne Ei noges; - lgaselljne 82 noﬁes% We use ICSY, because SymphonyFS requires the root privilege to
I Paralog (4 nodes) HEEEE Paralog (16 nodes . .
C—= Baseline (8 nodes) Baseline (32 nodes) use. FUSE. Figure l.Oa Plots the ?esu_lts with the I.OR b_enchmark [81]
E== Paralog (8 nodes) MBS ParaLog (32 nodes) which emulates scientific applications producing different output
500 I 1 T T T 1 T sizes. ParalLog performs the best except for the case with 20 small
400 | outputs over 5 minutes. This is expected; since Paralog persists
data and metadata of every write, the frequent output of small files
L300 g exhibits the worst case. However, overall, Paral.og achieves a similar
(5] . .
£ 200 or better performance than SymphonyFS while guaranteeing crash
=

100

40 20
cycles per output

100

200

Figure 9: End-to-end completion of Neko on Lumi uploading to
Lumi-O S3 through Paral.og buffering on ramdisk (§ 8.3).

8.5 Comparison to SymphonyFS

We compare ParalLog against SymphonyFS, which is a writeback
cache that is the most similar to Paral.og to our knowledge. It supports
arbitrary remote POSIX file storage with write-back caching at the
node-local block device (§ 5.2). While SymphonyFS must block on
fsync until remote sync is complete, Paral.og can return immediately
once data is persisted locally. This is because Paral.og provides
crash recovery from local logs even if remote data is not completely
reconstructed. Whereas SymphonyFS has no logging or cross-process
synchronization knowledge. Another important implication is that

SymphonyFS cannot support non-POSIX semantics such as S3.

ParalLog only initiates a remote checkpoint when data becomes
immutable at a consistency point, which can effectively resolve
semantic differences between POSIX and object storage.

consistency.

After that, we run a real-world application, Neko (Figure 10b).
To the best of our knowledge, SymphonyFS has not been evaluated
against real-world workloads in literature [83], and Ref.[63] only
performed IOR experiments. We control the network bandwidth
with Linux tc to emulate throughput limits and eliminate the NFS
server disk bottleneck using a ramdisk. As expected, when the remote
storage bandwidth is lower, Paral.og outperforms SymphonyFS by a
larger margin (up to 23%), demonstrating the advantage of local sync
over earlier remote sync. Furthermore, the application cannot enforce
synchronization in SymphonyFS without blocking the application,
which means consistency is not supported (thus no consistency).

8.6 Data Recovery Performance

Since a checkpoint process is equal to a remote write using regular
storage APIs (e.g., MPI-10), re-running a checkpoint gives a similar
performance. We measure file recovery performance by populating
the output files of a single iteration of Neko and iPIC3D in local
storage. We then measure the time taken to transfer (i.e., recover)
those files into the remote aggregated file in FSx Lustre. As expected,
results in Figure 11 show that throughput is constrained by the remote
server, similar to observations in Figure 2.

Paralog: Consistent Host-side Logging for Parallel Checkpoints

SoCC '25, November 19-21, 2025, Online, USA

20 310 MiB ' 620 MiB | 1.2 GiB % ! ‘ ‘ ! ! ‘ ‘
1 1 . 1
per output per output per output . NFS Eeeeq

AQQ S TR g S] - R SymphonyFS (no consistency) 1
—_ ParalLog ==
L2 300 1 o Ul Ee BRI -
O
£
= 200 [~ 1 o e e R R R R R Bl g

100 [~ -1 o e - -

0

5 10 20 20 5

5 10
outputs

20 05 1 15 2 25 3 35 4
Remote storage bandwidth [Gbps]

(a) Acceleration of IOR benchmark using SymphonyFS and ParaLog over NFS. Each

experiment ''computes'' a total of five minutes and outputs between 5-20 times. The NFS

is backed by a SATA HDD.

(b) Neko outputting data under different bandwidth limits.

Figure 10: Comparing between ParalLog and SymphonyFS on ICSY (§ 8.5).

B Neko (Throughput)
I iPIC3D (Throughput) —#

Neko (Time)
iPIC3D (Time)

7
&
S 2 =
E P
£ E
= =
o
£
=0

nodes

Figure 11: Recovery performance, where lines are associated
with time, and bars are associated with throughput. (§ 8.6).

MPI_File_open
MPI_File write_at
MPI_File_close
Local segment(s)

MPI_File_open
MPI_File write_at
MPI File close

MPI_File_open
MPI_File write_at
MPI_File_close

Figure 12: Tool to stress the Paral.og write cache management

(8§ 8.7).

When an application restarts, it fetches restart files from remote
storage. Paral.og would cause extra delay in restarting only if the
latest checkpoint has been interrupted. In this case, the checkpoint
has to be rerun before the application can restart.

8.7 Local Data Management

We have so far demonstrated how Paral.og can exploit systems
with different performance characteristics. However, would ParalLog
still be effective with extremely fast local storage? To answer this
question, we measure the performance of our write cache management
described in § 6.2 on one process in one node on our AWS cluster
to quantify its overhead.

8.7.1 Open and Write. Since we create a segment file for every
write operation unless it can extend the previous one without a gap,
the extra costs in creating and closing a file can lead to overhead.
We characterize those overheads using a custom program that opens,

No ParaLog (ramdisk)
ParalLog (ramdisk) ——

Append Write (ramdisk)
Seek write (ramdisk)

No ParalLog (EBS) Append write (EBS)
ParaLog (EBS) Seek write (EBS)
= \ \ \ \ I T
FEE 1000 =
= 750 —
3
£ 500 1
2
& 250 —
= \ \ \ \ \ \

00 5000 10000 15000 0O 5000 10000 15000
File size [KiB] Segment size [KiB]

(a) New segment file creations. (b) Appends or seek-and-writes.

Figure 13: ParalLog local data management microbenchmarks

(§ 8.7).

writes one segment of data (1-16384 KiB), and closes a file (Fig-
ure 12:a); this I/O pattern resembles the iPIC3D application. We use
an EBS block device and a RAMDisk, emulating an extremely fast
block device to highlight the file metadata management overhead of
Paralog.

Figure 13:a plots the results, where the baseline refers to writing
without ParalLog. The relative overheads are amortized over the
movement of larger data segments. This convergence (between the
darker and lighter lines) is even clearer on the ramdisk. We note
that the throughput converges to a higher rate than the EBS baseline
bandwidth (125 MB/s) as they likely benefit from the burst allowance.
We conclude that the per-write overheads in ParalLog are low enough,
even when the backing block device is very fast.

8.7.2 Contiguous and Discontiguous Writes. We then benchmark
the performance of the other write pattern, which extends existing
segments (Figure 5:@) or writes in a new offset in the eventual
shared file (Figure 5:@). We keep the file but continuously write
100 new segments into it (i.e., writing to where the last write left
off).

Figure 13:b plots the results. As expected, writing to a new offset
(with a seek) is significantly slower than extending the existing writes,
because it needs to flush the current segment file and create a new

SoCC '25, November 19-21, 2025, Online, USA

one. However, the costs of those operations are amortized when the
segment size is large enough (e.g., 4096KiB), resulting in a similar
throughput to the append writes. We again attribute the initial high
rate in the Append-write case for EBS to the benefit of burst credit.

Our results show that Paral.og’s I/O interposition introduces
minimal overhead in a range of storage devices. Furthermore, our
results on EBS show that cloud block storage is fast enough even
though they are decoupled from the instances. We note that segment
sizes are typically large because MPI-10’s aggregation (§ 2.2) results
in large writes. In fact, we observe that (§ 4) only one segment is used
in Neko, which is approximately 128MiB; iPIC3D outputs smaller
files, which use between 1.8 and 5.6MiB per segment.

9 RELATED WORKS

Caching is widely adopted to improve storage performance and
characterized into two approaches. The first is write-through caching,
where data is synchronously written to both the cache and primary
storage. This does not help write performance, but can improve
subsequent reads as they can be retrieved from the caching layer. The
second is write-back caching, which is relevant to Paral.og. Rather
than synchronously writing data to storage, it is first buffered in the
caching layer before being asynchronously written to storage. This
improves write performance as I/O operations can return quickly.

Block-level cache. Block-level cache is transparent to both file
systems and applications. NetApp’s Mercury [17] is a write-through
cache where the writes are immediately flushed to the remote storage.
The cache thus holds no dirty pages and serves subsequent reads.
Consistent write-back caching [47] and LSVD [33], on the other
hand, perform write-back caching, where a durable write returns
immediately after being locally persisted, and are beneficial for
write-heavy workloads.

File system level cache. Arion [35] proposes host-side journal for
the Ceph file system [93]. Writes are buffered in DRAM, then synced
to a journal backed by a block storage device. LPCC [69] extends the
Lustre [80] file system to use local storage through its Hierarchical
Storage Management (HSM). SymphonyFS [63], which is evaluated

against ParalLog (§ 8.5), exposes a caching layer as a FUSE file system.

All these approaches suffer from issues with data safety (§ 5.4) and
deployability (§ 5.5). DDN’s IME [77], and HadaFS [36] integrate
caching at I/O forwarding nodes, target specific HPC clusters, and
require dedicated hardware. This makes it challenging to deploy on
small-scale on-premise clusters. Adapting them to the cloud increases
cost while underutilizing already available local storage.

Library-level cache. Hermes [50] is a library-level approach that
resides under the MPI-1O layer and redirects system calls to the local
storage layer. However, it does not support crash recovery when
using the write-back mode. Spectral [63, 96] is a simple write-back
cache that redirects file operations to local storage and syncs data
to remote after capturing the close system call. It does not support
shared file I/O. Data Elevator [25] is a cache implemented inside
the HDFS5 1/0 library (which also uses MPI-I10), thus only supports
applications using the HDF5 file format. Similarly, ADIOS2 [30] is
a streaming-oriented I/O library that can utilize local storage, but it
stores data in a custom binary-packed format.

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

10 DISCUSSION AND FUTURE WORKS

ParalLog shows that end-to-end completion time for data-intensive
scientific applications can be improved by addressing bandwidth
utilization (§ 3.1), platform environment mismatch (§ 3.2), and
operational mismatch (§ 3.3). This is achieved transparently, and
without compromising—even enhancing—crash consistency.

ParalLog uses a distributed, snapshot-aware log and leverages
synchronization points from high-level libraries to ensure cross-
node consistency. While we have demonstrated ParalLog with MPI-
based scientific applications, it could support any application that
uses collective communication and synchronization primitives. For
example, ML frameworks such as PyTorch output and overwrite
checkpoint files asynchronously. This means that an interruption
will leave even the previous checkpoint file in a corrupt state [62].
With ParalLog, only consistent snapshots are checkpointed to the
remote storage. As long as a synchronization point can be captured,
possibly transparently (e.g, Allreduce), ParalLog can be applied. We
intend to explore Paralog in other parallel applications, such as ML
frameworks, in the future.

Although ParalLog focuses on write-only workloads (§ 6.2), read-
after-write (RAW) can be supported by checking the in-memory table
and retrieving data from segment files. If an offset is not found, the
request can be forwarded to remote storage. In this case, consistency
cannot be guaranteed. For files requiring cross-process write-after-
write or read-after-write, a job-level temporary file system is a better
fit (§ 5.1), which can complement Paral.og’s focus on write-intensive
files.

11 CONCLUSION

Data-intensive applications, such as scientific workloads, are sen-
sitive to low bandwidth and often underutilize available resources
due to platform and operational mismatches. We proposed Paral.og,
a distributed logging system that supports cross-node data consis-
tency while overlapping compute-output to improve end-to-end job
completion time. Paral.og accelerates three unmodified scientific
applications across five platforms — including on-premise cluster,
traditional HPC, and cloud HPC — covering NFS, shared PFS, and
cloud-managed PFS. We show for the first time how applications can
use fully-fledged MPI-IO to write data directly to S3 in an imme-
diately shareable format. This is done on a recent production HPC
system that supports S3 as a major storage subsystem, demonstrating
its impact. We provided those features through three approaches: no
modification in the application, no additional support from the cloud
operator or system administration, and support for unmodified MPI
libraries, including closed-source ones.

ACKNOWLEDGMENTS

This work was partly supported by the Engineering and Physical Sci-
ences Research Council [EP/V053418/1]. We acknowledge EuroHPC
Joint Undertaking for awarding us access to LUMI at CSC, Finland,
and Vega at IZUM, Slovenia. The authors would like to thank Prof
Adrian Jackson and EPCC for providing access and assisting us in
using the NEXTGenlO system.

Paralog: Consistent Host-side Logging for Parallel Checkpoints

REFERENCES

[1]
[2]

3

[4

[5

[6

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[n.d.]. MPICH | High-Performance Portable MPI — mpich.org. https://www.
mpich.org/. [Accessed 03-10-2025].

2019. The road to autonomous driving runs through the cloud. https://customers.
microsoft.com/en-gb/story/720063-audi-azure-automotive-en. (Accessed on
12/21/2022).

Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham,
Robert Ross, Lee Ward, and Ponnuswamy Sadayappan. 2009. Scalable 1I/O
forwarding framework for high-performance computing systems. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1-10.
Daniel Aradjo De Medeiros, Stefano Markidis, and Ivy Bo Peng. 2023. LibCOS:
Enabling Converged HPC and Cloud Data Stores with MPL. In Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region.
106-116.

Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani,
Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta, Sebastian
Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the 2022
International Conference on Management of Data. 2205-2217.

Marco Atzori, Wiebke Kopp, Steven WD Chien, Daniele Massaro, Fermin Mallor,
Adam Peplinski, Mohamad Rezaei, Niclas Jansson, Stefano Markidis, Ricardo
Vinuesa, et al. 2022. In situ visualization of large-scale turbulence simulations in
Nek5000 with ParaView Catalyst. The Journal of Supercomputing 78, 3 (2022),
3605-3620.

AWS. [n.d.]. AWS ParallelCluster Documentation. https://docs.aws.amazon.com/
parallelcluster/. (Accessed on 12/14/2022).

AWS. 2025. Amazon FSx for Lustre | Cloud File Storage Integrated with S3 |
AWS. https://aws.amazon.com/fsx/lustre/. (Accessed on 11/07/2025).

AWS. 2025. AWS SDK for C++ Documentation. https://docs.aws.amazon.com/sdk-
for-cpp/. (Accessed on 11/07/2025).

Microsoft Azure. 2025. Azure Managed Lustre — Managed Parallel File Sys-
tem. https://azure.microsoft.com/en-us/products/managed-lustre. (Accessed on
11/07/2025).

Janine C Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila Gyulassy,
Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar, Valerio Pascucci,
et al. 2012. Combining in-situ and in-transit processing to enable extreme-scale
scientific analysis. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-9.

Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna,
Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access Patterns
and Performance Behaviors of Multi-Layer Supercomputer I/O Subsystems under
Production Load. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC
’22). Association for Computing Machinery, New York, NY, USA, 43-55. https:
//doi.org/10.1145/3502181.3531461

Michael J Brim, Adam T Moody, Seung-Hwan Lim, Ross Miller, Swen Boehm,
Cameron Stanavige, Kathryn M Mohror, and Sarp Oral. 2023. UnifyFS: A user-
level shared file system for unified access to distributed local storage. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
290-300.

Marc Brooker, Tao Chen, and Fan Ping. 2020. Millions of Tiny Databases.. In
NSDI. 463-478.

SW Bruenn, A Mezzacappa, WR Hix, JM Blondin, P Marronetti, OEB Messer,
CJ Dirk, and S Yoshida. 2009. 2D and 3D core-collapse supernovae simulation
results obtained with the CHIMERA code. In Journal of Physics: Conference
Series, Vol. 180. IOP Publishing, 012018.

BSC. 2025. MareNostrum 5. https://www.bsc.es/marenostrum/marenostrum-S5.
(Accessed on 14/07/2025).

Steve Byan, James Lentini, Anshul Madan, Luis Pabon, Michael Condict, Jeff
Kimmel, Steve Kleiman, Christopher Small, and Mark Storer. 2012. Mercury:
Host-side flash caching for the data center. In 2012 IEEE 28th symposium on mass
storage systems and technologies (MSST). IEEE, 1-12.

Wei Cao, Xiaojie Feng, Boyuan Liang, Tianyu Zhang, Yusong Gao, Yunyang
Zhang, and Feifei Li. 2021. Logstore: A cloud-native and multi-tenant log database.
In Proceedings of the 2021 International Conference on Management of Data.
2464-2476.

Tony F. Chan and Tarek P. Mathew. 1994. Domain decomposition algorithms.
Acta Numerica 3 (1994), 61-143. https://doi.org/10.1017/50962492900002427
Meelan M Choudhari and David P Lockard. 2015. Assessment of slat noise
predictions for 30P30N high-lift configuration from BANC-III workshop. In 215t
AIAA/CEAS aeroacoustics conference. 2844.

CSC. [n.d.]. Documentation - Overview — docs.lumi-supercomputer.eu. https:
//docs.lumi-supercomputer.eu/hardware/. [Accessed 02-04-2024].

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceedings
of the 2016 International Conference on Management of Data. 215-226.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

SoCC '25, November 19-21, 2025, Online, USA

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh
Trivedi. 2022. Understanding modern storage APIs: a systematic study of libaio,
SPDK, and io_uring. In Proceedings of the 15th ACM International Conference
on Systems and Storage (Haifa, Israel) (SYSTOR °22). Association for Computing
Machinery, New York, NY, USA, 120-127. https://doi.org/10.1145/3534056.
3534945

Bin Dong, Suren Byna, Kesheng Wu, Prabhat, Hans Johansen, Jeftfrey N. Johnson,
and Noel Keen. 2016. Data Elevator: Low-Contention Data Movement in Hierar-
chical Storage System. In 2016 IEEE 23rd International Conference on High Per-

Sformance Computing (HiPC). 152-161. https://doi.org/10.1109/HiPC.2016.026

Romain Dupuis, Martin V Goldman, David L Newman, Jorge Amaya, and Giovanni
Lapenta. 2020. Characterizing magnetic reconnection regions using Gaussian
mixture models on particle velocity distributions. The Astrophysical Journal 889,
1 (2020), 22.

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.
2011. An Overview of the HDF5 Technology Suite and Its Applications. In
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala,
Sweden) (AD ’11). Association for Computing Machinery, New York, NY, USA,
36-47. https://doi.org/10.1145/1966895.1966900

Takaaki Fukai, Kento Sato, and Takahiro Hirofuchi. 2022. Analyzing I/O Perfor-
mance of a Hierarchical HPC Storage System for Distributed Deep Learning. In
International Conference on Parallel and Distributed Computing: Applications
and Technologies. Springer, 81-93.

Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R De Supinski, and Scott Futral. 2015. The Spack package
manager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-12.

William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg
Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin
Huck, et al. 2020. Adios 2: The adaptable input output system. a framework for
high-performance data management. SoftwareX 12 (2020), 100561.

William Gropp, Steven Huss-Lederman, and Marc Snir. 1998. MPI: the complete
reference. The MPI-2 extensions. Vol. 2. Mit Press.

Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and
How to Exploit it: High-Performance I/O for High-Performance Storage Engines.
Proc. VLDB Endow. 16, 9 (May 2023), 2090-2102. https://doi.org/10.14778/
3598581.3598584

Mohammad Hossein Hajkazemi, Vojtech Aschenbrenner, Mania Abdi, Emine Ugur
Kaynar, Amin Mossayebzadeh, Orran Krieger, and Peter Desnoyers. 2022. Beating
the I/0 bottleneck: a case for log-structured virtual disks. In Proceedings of the
Seventeenth European Conference on Computer Systems. 628—643.

David J. Hardy, John E. Stone, Barry Isralewitz, and Emad Tajkhorshid. 2021.
Lessons Learned from Responsive Molecular Dynamics Studies of the COVID-19
Virus. In 2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC). 1-10.
https://doi.org/10.1109/UrgentHPC54802.2021.00006

Andromachi Hatzieleftheriou and Stergios Anastasiadis. 2015. Host-side filesystem
journaling for durable shared storage. In /3th USENIX Conference on File and
Storage Technologies (FAST 15). 59-66.

Xiaobin He, Bin Yang, Jie Gao, Wei Xiao, Qi Chen, Shupeng Shi, Dexun Chen,
Weiguo Liu, Wei Xue, and Zuo-ning Chen. 2023. HadaFS: A File System Bridging
the Local and Shared Burst Buffer for Exascale Supercomputers. In 2/st USENIX
Conference on File and Storage Technologies (FAST 23). 215-230.

Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and
Nicholas J Wright. 2016. Architecture and design of cray datawarp. Cray
User Group CUG (2016).

Zanhua Huang, Kaiyuan Hou, Ankit Agrawal, Alok Choudhary, Robert Ross,
and Wei-Keng Liao. 2023. I/0O in WRF: A Case Study in Modern Parallel I/O
Techniques. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC °23). Association for Computing
Machinery, New York, NY, USA, Article 94, 13 pages. https://doi.org/10.1145/
3581784.3613216

Maria Elena Innocenti, Anna Tenerani, Elisabetta Boella, and Marco Velli. 2019.
Onset and evolution of the oblique, resonant electron firehose instability in the
expanding solar wind plasma. The Astrophysical Journal 883, 2 (2019), 146.
Intel. [n.d.]. Intel® MPI Library. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html. (Accessed on 12/09/2022).

IZUM. [n.d.]. Specifications - HPC Vega - IZUM, Maribor, Slovenia — en-
vegadocs.vega.izum.si. https://en-vegadocs.vega.izum.si/general-spec/. [Accessed
02-04-2024].

Niclas Jansson, Martin Karp, Adalberto Perez, Timofey Mukha, Yi Ju, Jiahui
Liu, Szilard P4ll, Erwin Laure, Tino Weinkauf, Jérg Schumacher, Philipp Schlat-
ter, and Stefano Markidis. 2023. Exploring the Ultimate Regime of Turbu-
lent Rayleigh—Bénard Convection Through Unprecedented Spectral-Element

https://www.mpich.org/
https://www.mpich.org/
https://customers.microsoft.com/en-gb/story/720063-audi-azure-automotive-en
https://customers.microsoft.com/en-gb/story/720063-audi-azure-automotive-en
https://docs.aws.amazon.com/parallelcluster/
https://docs.aws.amazon.com/parallelcluster/
https://aws.amazon.com/fsx/lustre/
https://docs.aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/sdk-for-cpp/
https://azure.microsoft.com/en-us/products/managed-lustre
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1145/3502181.3531461
https://www.bsc.es/marenostrum/marenostrum-5
https://doi.org/10.1017/S0962492900002427
https://docs.lumi-supercomputer.eu/hardware/
https://docs.lumi-supercomputer.eu/hardware/
https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1109/HiPC.2016.026
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.14778/3598581.3598584
https://doi.org/10.14778/3598581.3598584
https://doi.org/10.1109/UrgentHPC54802.2021.00006
https://doi.org/10.1145/3581784.3613216
https://doi.org/10.1145/3581784.3613216
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://en-vegadocs.vega.izum.si/general-spec/

SoCC '25, November 19-21, 2025, Online, USA

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Simulations. In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC ’23). Associa-

tion for Computing Machinery, New York, NY, USA, Article 5, 9 pages.
https://doi.org/10.1145/3581784.3627039

Niclas Jansson, Martin Karp, Artur Podobas, Stefano Markidis, and Philipp
Schlatter. 2024. Neko: A modern, portable, and scalable framework for high-
fidelity computational fluid dynamics. Computers & Fluids 275 (2024), 106243.
Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng Zhu, Xiyang
Wang, Nosayba El-Sayed, Jidong Zhai, Weiguo Liu, and Wei Xue. 2019.
Automatic, { Application-Aware } {I/O} forwarding resource allocation. In /7th
USENIX Conference on File and Storage Technologies (FAST 19). 265-279.
Martin Karp, Daniele Massaro, Niclas Jansson, Alistair Hart, Jacob Wahlgren,
Philipp Schlatter, and Stefano Markidis. 2023. Large-Scale direct numerical
simulations of turbulence using GPUs and modern Fortran. The International
Journal of High Performance Computing Applications 37, 5 (2023), 487-502.
Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
~ Local Flash. SIGARCH Comput. Archit. News 45, 1 (April 2017), 345-359.
https://doi.org/10.1145/3093337.3037732

Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan Sundararaman,
Nisha Talagala, and Ming Zhao. 2013. Write policies for host-side flash caches. In
11th USENIX Conference on File and Storage Technologies (FAST 13). 45-58.
Todd Kordenbrock, Gary Templet, Craig Ulmer, and Patrick Widener. 2022.
Viability of s3 object storage for the asc program at sandia. Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia
Douglas Kothe and Ricky Kendall. 2007. Computational science requirements for
leadership computing. Oak Ridge National Laboratory, Technical Report (2007).
Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A
Heterogeneous-Aware Multi-Tiered Distributed I/0 Buffering System. In Proceed-
ings of the 27th International Symposium on High-Performance Parallel and Dis-
tributed Computing (Tempe, Arizona) (HPDC ’18). Association for Computing Ma-
chinery, New York, NY, USA, 219-230. https://doi.org/10.1145/3208040.3208059
Carsten Kutzner, Christian Kniep, Austin Cherian, Ludvig Nordstrom, Helmut
Grubmiiller, Bert L de Groot, and Vytautas Gapsys. 2022. GROMACS in the
cloud: A global supercomputer to speed up alchemical drug design. Journal of
Chemical Information and Modeling 62,7 (2022), 1691-1711.

AWS Lab. [n.d.]. Mountpoint for Amazon S3 file system behavior. https:
//github.com/awslabs/mountpoint-s3/blob/main/doc/SEMANTICS.md. (Accessed
on 12/07/2025).

Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William
Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. 2003.
Parallel netCDF: A high-performance scientific I/O interface. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing. 39.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S. Vazhkudai. 2014.
Automatic Identification of Application I/O Signatures from Noisy Server-Side
Traces. In 12th USENIX Conference on File and Storage Technologies (FAST
14). USENIX Association, Santa Clara, CA, 213-228. https://www.usenix.org/
conference/fast14/technical-sessions/presentation/liu

LLNL. 2020. Assumptions and Semantics — UnifyFS 2.0 documentation —
unifyfs.readthedocs.io. https://unifyfs.readthedocs.io/en/latest/assumptions.html.
[Accessed 03-04-2024].

LLNL. 2025. Using El Capitan Systems: File Systems and Rab-
bits. https://hpc.llnl.gov/documentation/user- guides/using-el-capitan-systems/file-
systems-rabbits. (Accessed on 14/07/2025).

Stefano Markidis, Giovanni Lapenta, et al. 2010. Multi-scale simulations of plasma
with iPIC3D. Mathematics and Computers in Simulation 80,7 (2010), 1509-1519.
Stefano Markidis, Ivy Bo Peng, Jesper Larsson Triff, Antoine Rougier, Valeria
Bartsch, Rui Machado, Mirko Rahn, Alistair Hart, Daniel Holmes, Mark Bull,
and Erwin Laure. 2016. The EPiIGRAM Project: Preparing Parallel Programming
Models for Exascale. In High Performance Computing, Michela Taufer, Bernd
Mohr, and Julian M. Kunkel (Eds.). Springer International Publishing, Cham,
56-68.

Luca Mascetti, Maria Arsuaga Rios, Enrico Bocchi, Joao Calado Vicente, Belinda
Chan Kwok Cheong, Diogo Castro, Julien Collet, Cristian Contescu, Hugo Gonza-
lez Labrador, Jan Iven, et al. 2020. Cern disk storage services: report from last
data taking, evolution and future outlook towards exabyte-scale storage. In EPJ
Web of Conferences, Vol. 245. EDP Sciences, 04038.

A Micera, AN Zhukov, RA Lépez, E Boella, A Tenerani, M Velli, G Lapenta, and
ME Innocenti. 2021. On the role of solar wind expansion as a source of whistler
waves: Scattering of suprathermal electrons and heat flux regulation in the inner
heliosphere. The Astrophysical Journal 919, 1 (2021), 42.

Ethan L Miller and Randy H Katz. 1991. Input/output behavior of supercomputing
applications. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing.
567-576.

Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
{CheckFreq}: Frequent,{Fine-Grained } {DNN} Checkpointing. In /9th USENIX
Conference on File and Storage Technologies (FAST 21). 203-216.

Sarp Oral, Sudharshan S. Vazhkudai, Feiyi Wang, Christopher Zimmer, Christopher
Brumgard, Jesse Hanley, George Markomanolis, Ross Miller, Dustin Leverman,

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis, and Micho Honda

Scott Atchley, and Veronica Vergara Larrea. 2019. End-to-End I/O Portfolio
for the Summit Supercomputing Ecosystem. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 63, 14 pages. https://doi.org/10.1145/3295500.3356157
ORNL. 2022. Frontier exascale system. https://www.olcf.ornl.gov/frontier/.
(Accessed on 14/07/2025).

Barbara K Pasquale and George C Polyzos. 1993. A static analysis of 1/O
characteristics of scientific applications in a production workload. In Proceedings
of the 1993 ACM/IEEE conference on Supercomputing. 388-397.

Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and
Dave Hitz. 1994. NFS Version 3: Design and Implementation.. In USENIX Summer.
Boston, MA, 137-152.

NEXTGenlO Project. [n. d.]. System Overview — nextgenio-docs documentation
— ngioproject.github.io. https://ngioproject.github.io/nextgenio-docs/html/user_
guide/hardware.html. [Accessed 02-04-2024].

Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice Koniges.
2001. MPI-IO/GPEFS, an optimized implementation of MPI-IO on top of GPFS.
In SC’01: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing.
IEEE, 58-58.

Yingjin Qian, Xi Li, Shuichi Ihara, Andreas Dilger, Carlos Thomaz, Shilong
Wang, Wen Cheng, Chunyan Li, Lingfang Zeng, Fang Wang, et al. 2019. LPCC:
hierarchical persistent client caching for lustre. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-14.

Yingjin Qian, Marc-André Vef, Patrick Farrell, Andreas Dilger, Xi Li, Shuichi
Thara, Yinjin Fu, Wei Xue, and Andre Brinkmann. 2024. Combining Buffered
I/O and Direct I/O in Distributed File Systems. In 22nd USENIX Conference on
File and Storage Technologies (FAST 24). USENIX Association, Santa Clara, CA,
17-33. https://www.usenix.org/conference/fast24/presentation/qian

Dai Qin, Angela Demke Brown, and Ashvin Goel. 2014. Reliable writeback for
client-side flash caches. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). 451-462.

Mehdi R. Khorrami. 2017. NASA@SC17: Ahead by More Than a Nose: Progress
in Airframe Noise Analysis and Prediction. https://www.nas.nasa.gov/SC17/
demos/demo2.html. (Accessed on 01/10/2023).

IBM Research. [n.d.]. Changing a line of code to greatly improve Al model
training. https://research.ibm.com/blog/ibm-pytorch-ai-training. (Accessed on
12/07/2025).

s3fs fuse. [n. d.]. s3fs-fuse. https://github.com/s3fs-fuse/s3fs-fuse. (Accessed on
12/07/2025).

Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski,
Naoya Maruyama, and Satoshi Matsuoka. 2014. A User-Level InfiniBand-Based
File System and Checkpoint Strategy for Burst Buffers. In 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 21-30. https:
//doi.org/10.1109/CCGrid.2014.24

Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya
Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo
Miyoshi, et al. 2020. Co-design for a64fx manycore processor and” fugaku”. In
SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-15.

Wolfram Schenck, Salem El Sayed, Maciej Foszczynski, Wilhelm Homberg,
and Dirk Pleiter. 2016. Early evaluation of the “Infinite Memory Engine” burst
buffer solution. In High Performance Computing: ISC High Performance 2016
International Workshops, ExaComm, E-MuCoCoS, HPC-10DC, IXPUG, IWOPH,
P*3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19-23, 2016, Revised Selected
Papers 31. Springer, 604-615.

Philipp Schlatter, Martin Karp, Daniele Massaro, Niclas Jansson, and Stefano
Markidis. 2022. Neko: A new spectral element code applied to the simulation of a
Flettner rotor. Bulletin of the American Physical Society (2022).

Frank Schmuck and Roger Haskin. 2002. {GPFS}: A {Shared-Disk} file system
for large computing clusters. In Conference on file and storage technologies (FAST
02).

Philip Schwan et al. 2003. Lustre: Building a file system for 1000-node clusters.
In Proceedings of the 2003 Linux symposium, Vol. 2003. 380-386.

Hongzhang Shan and John Shalf. 2007. Using IOR to analyze the I/O performance
for HPC platforms. Technical Report. Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States).

William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Zhiquan Liu,
Judith Berner, Wei Wang, Jordan G Powers, Michael G Duda, Dale M Barker, et al.
2019. A description of the advanced research WRF version 4. NCAR tech. note
ncar/tn-556+ str 145 (2019).

Kohei Sugihara and Osamu Tatebe. 2020. Design of Locality-aware MPI-1O for
Scalable Shared File Write Performance. In 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 1080-1089. https:
//doi.org/10.1109/IPDPSW50202.2020.00179

https://doi.org/10.1145/3581784.3627039
https://doi.org/10.1145/3093337.3037732
https://doi.org/10.1145/3208040.3208059
https://github.com/awslabs/mountpoint-s3/blob/main/doc/SEMANTICS.md
https://github.com/awslabs/mountpoint-s3/blob/main/doc/SEMANTICS.md
https://www.usenix.org/conference/fast14/technical-sessions/presentation/liu
https://www.usenix.org/conference/fast14/technical-sessions/presentation/liu
https://unifyfs.readthedocs.io/en/latest/assumptions.html
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems/file-systems-rabbits
https://hpc.llnl.gov/documentation/user-guides/using-el-capitan-systems/file-systems-rabbits
https://doi.org/10.1145/3295500.3356157
https://www.olcf.ornl.gov/frontier/
https://ngioproject.github.io/nextgenio-docs/html/user_guide/hardware.html
https://ngioproject.github.io/nextgenio-docs/html/user_guide/hardware.html
https://www.usenix.org/conference/fast24/presentation/qian
https://www.nas.nasa.gov/SC17/demos/demo2.html
https://www.nas.nasa.gov/SC17/demos/demo2.html
https://research.ibm.com/blog/ibm-pytorch-ai-training
https://github.com/s3fs-fuse/s3fs-fuse
https://doi.org/10.1109/CCGrid.2014.24
https://doi.org/10.1109/CCGrid.2014.24
https://doi.org/10.1109/IPDPSW50202.2020.00179
https://doi.org/10.1109/IPDPSW50202.2020.00179

Paralog: Consistent Host-side Logging for Parallel Checkpoints

(84]

[85]

[86]

(871

(88]

[89]

[90]

The Open MPI Project. [n.d.]. Open MPI: Open Source High Performance
Computing — open-mpi.org. https://www.open-mpi.org/. [Accessed 03-10-
2025].

SIGARCH Computer Architecture Today. [n.d.]. From FLOPS to IOPS: The New
Bottlenecks of Scientific Computing. https://www.sigarch.org/from-flops-to-iops-
the-new-bottlenecks-of-scientific-computing/. (Accessed on 11/07/2025).

U. U. Turuncoglu. 2019. Toward modular in situ visualization in Earth system mod-
els: the regional modeling system RegESM 1.1. Geoscientific Model Development
12,1 (2019), 233-259. https://doi.org/10.5194/gmd-12-233-2019

Ben Vandiver, Shreya Prasad, Pratibha Rana, Eden Zik, Amin Saeidi, Pratyush
Parimal, Styliani Pantela, and Jaimin Dave. 2018. Eon mode: Bringing the
vertica columnar database to the cloud. In Proceedings of the 2018 International
Conference on Management of Data. 797-809.

Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017. To {FUSE}
or Not to {FUSE}: Performance of {User-Space} File Systems. In 15th USENIX
Conference on File and Storage Technologies (FAST 17). 59-72.

Marc-André Vef, Nafiseh Moti, Tim Sii3, Markus Tacke, Tommaso Tocci, Ramon
Nou, Alberto Miranda, Toni Cortes, and André Brinkmann. 2020. GekkoFS—A
temporary burst buffer file system for HPC applications. Journal of Computer
Science and Technology 35, 1 (2020), 72-91.

Lipeng Wan, Kshitij V Mehta, Scott A Klasky, Matthew D Wolf, H' Y Wang,
W H Wang, J C Li, and Zhihong Lin. 2019. Data management challenges of
exascale scientific simulations: A case study with the Gyrokinetic Toroidal Code

[91]

[92]

[93]

[94]

[95]

[96]

SoCC '25, November 19-21, 2025, Online, USA

and ADIOS. Technical Report. Oak Ridge National Lab.(ORNL), Oak Ridge, TN
(United States).

Chen Wang, Kathryn Mohror, and Marc Snir. 2021. File system semantics
requirements of HPC applications. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing. 19-30.
Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu.
2016. An ephemeral burst-buffer file system for scientific applications. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 807-818.

Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th Conference on Operating Systems Design and Implementation (OSDI’06).
307-320.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44—60.

Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver, Nicholas John
Newman, Ali Anwar, Lukas Rupprecht, Vasily Tarasov, Dimitrios Skourtis, Feng
Yan, and Yue Cheng. 2023. InfiniStore: Elastic Serverless Cloud Storage. Proc.
VLDB Endow. 16, 7 (mar 2023), 1629-1642. https://doi.org/10.14778/3587136.
3587139

Christopher Zimmer. 2022. spectral-1O. https://code.ornl.gov/cz7/spectral-io.
Accessed: 2022-02-02.

https://www.open-mpi.org/
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://www.sigarch.org/from-flops-to-iops-the-new-bottlenecks-of-scientific-computing/
https://doi.org/10.5194/gmd-12-233-2019
https://doi.org/10.14778/3587136.3587139
https://doi.org/10.14778/3587136.3587139
https://code.ornl.gov/cz7/spectral-io

	Abstract
	1 Introduction
	2 Scientific Application Overview
	2.1 Storage Architecture
	2.2 Programming Model
	2.3 File Consistency Model

	3 Motivation
	3.1 Insufficient Bandwidth
	3.2 Platform Mismatch
	3.3 Operational Mismatch

	4 Case Study
	5 Design Space
	5.1 Hierarchical Local Storage
	5.2 Caching
	5.3 Heterogeneous Storage
	5.4 Data Safety
	5.5 Deployability

	6 ParaLog Design
	6.1 Crash Consistency Model
	6.2 Local Data Management
	6.3 Checkpoint
	6.4 Crash Recovery
	6.5 MPI-IO Augmentation
	6.6 Implementation and Deployment

	7 ParaLog in Action
	8 Evaluation
	8.1 Traditional HPC Systems
	8.2 FSx for Lustre in Public Cloud
	8.3 S3 Backend
	8.4 NFS Backend
	8.5 Comparison to SymphonyFS
	8.6 Data Recovery Performance
	8.7 Local Data Management

	9 Related Works
	10 Discussion and Future Works
	11 Conclusion
	References

