
Packets as Persistent In-Memory Data Structures
Michio Honda

University of Edinburgh
michio.honda@ed.ac.uk

ABSTRACT
Networked storage applications cannot fully benefit from
fast persistent memory (PM), because of data management
overheads incurred to implement storage properties, such
as integrity, consistency, search efficiency and flexibility. To
address this problem, we explore a new approach that turns
networking overheads into assets, repurposing the transport
protocol and network stack features, some of which can be
offloaded to the NIC hardware, for implementing the storage
properties particularly for the PM devices.
CCS Concepts • Software and its engineering → Operating
systems; • Networks → Transport protocols; • Information
systems → Data structures;
Keywords Persistent memory, transport protocols
ACM Reference Format:
Michio Honda. 2021. Packets as Persistent In-Memory Data Struc-
tures. In The Twentieth ACM Workshop on Hot Topics in Networks
(HotNets ’21), November 10–12, 2021, Virtual Event, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3484266.
3487386

1 INTRODUCTION
Storage systems serve as the primary repository of data that
the users or operators cannot afford to lose. In the form of
a file system, object store and relational or non-relational
database, they support a number of systems and applications,
such as web applications and data analytics systems. Since
reliability is of importance, storage systems host their data
while ensuring various storage properties, such as durability
to survive system reboots, integrity against silent hardware
or software failures, and consistency on concurrent requests
and failure recovery. Storage systems also optimize their data
structures to serve requests efficiently.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487386

Persistent memory (PM), also known as non-volatile main
memory, motivates researchers and practitioners to redesign
system software. This is because it is not just a fast storage
media, but provides a new access method, which allows
the applications to access persistent data in byte granularity
without system calls nor DRAM buffer cache. Unsurprisingly,
file systems and databases have pioneered the use of PM,
coping with those unique features to offer fast, reliable data
store to the applications (§ 2.1).
Although PM has those attractive features, would it im-

prove realistic deployment? In data centers, most machines
are interconnected over a high-speed network fabric, and
storage nodes are often disaggregated into rack-scale clus-
ters [39, 24, 32], serving the computing nodes installed in
other racks. Edge clouds, including Content Delivery Net-
works (CDNs), are deployed in close proximity to the residen-
tial or mobile clients, and directly connect to high bandwidth
uplinks; the storage servers push the data at rates of millions
of requests per second [1]. In either deployment, as both net-
works and storage devices are fast (e.g., several or tens of µs
in latency) and request rates are high, individual servers have
little CPU cycle or time budget to process a single request
moved between storage and network devices.
Unfortunately, processing a request involves a number

of steps throughout the host system. When a packet with a
request arrives at the NIC from the network, the network
stack processes it in the protocol implementations (e.g., IPv4
and TCP). The stack then links the payload data to the socket
buffer of the receiver application, which is identified by the
transport port number. The storage stack application, such as
a key-value store, reads the data from the socket buffer and
processes the data based on its own semantics; for example, it
parses the data for a key-value pair and get or put command.
If the request is a put, the application writes the data in
its own persistent data structures with metadata, such as
identifier, links to other data, checksum and timestamp, so
that it can efficiently locate and retrieve the data even after
a reboot. These steps over the network and storage stack
overwhelm the CPU cycles thus diminish the performance
benefit of the PM devices (§ 3).

Existing approaches to exploiting the performance of PM
in the context of networked systems, such as Mojim [49],
Octopus [27] and FileMR [45], rely on RDMA to eliminate
networking latency and processing overheads, which thus
leave more CPU cycles for the storage software stack or

https://doi.org/10.1145/3484266.3487386
https://doi.org/10.1145/3484266.3487386
https://doi.org/10.1145/3484266.3487386

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Michio Honda

PM storage stacks

Syscall interface

Network
stack

File systems

PM file

DAX

DRAM

User

NICs Disks
Main memory
I/O peripherals

Kernel

m
em

ory
m

ap

H/W

Block layer

Figure 1: Networked PMhost stack.A storage stack (§ 2.1),
maps a PM-backed file in its address space.

application. However, the reliance on RDMA restricts de-
ployment, even if the requirement of the lossless network
fabric is obviated as in IRN [31]. For example, clients and net-
work fabric also need to be replaced or reconfigured. Further,
RDMA systems cannot serve the requests over the Internet,
which is unacceptable for edge clouds.

In this paper, we propose an approach to turn networking
features into assets to enable storage properties, instead of
considering them as overheads, which is the case in RDMA-
based approaches. We aim to repurpose the information and
features available in the network protocols and stack, some
of which can be accelerated by hardware offloading available
in modern NICs, for implementing storage properties. We be-
lieve this is a right direction, because TCP stacks have been
optimized and new reliable transport protocols with low-
latency congestion control algorithms have been recently
developed in software but with the possibility of being im-
plemented in hardware [33, 13] (§ 5.2).

The key insight here is that network packets and their repre-
sentation in the network stack are flexible, efficient in-memory
data structures accompanied by rich metadata designed to sur-
vive unreliable hardware. Reliable transport protocols, such
as TCP, attach checksum and timestamp to every segment;
the network stack can also represent data that spans across
multiple packets. These features could be useful particularly
to manage the PM-backed data, which can be persistent with-
out serialization. Both transport protocols and storage stacks
have been designed to manipulate faulty, dumb network
and storage hardware, respectively, but they have had to be
implemented in isolation, because the former is in-memory
data structures and the latter is on-disk ones. However, when
data resides in PMs, its data structures resemble in-memory
data structures, motivating us to unify the both.

2 BACKGROUND AND RELATEDWORK
To better understand the overheads incurred in the end-to-
end request processing cycle (§ 1), this section reviews the
features and techniques in the storage and network stacks.

2.1 Persistent Storage Stacks
Persistent data structures have originally been designed for
block I/O devices as file systems. Their main properties are
naming, durability and crash consistency. The disk space is
addressed by blocks, typically 4KB each, and divides into

three sections: the data region that holds user data contents,
inode table that maintains file metadata and pointers to data
blocks, and superblock that identifies the filesystem itself.
Popular design patterns include grouping a portion of the
inode table and corresponding data blocks to reduce the
expensive seeks on a spinning disk (e.g., FFS [30]) and ap-
pending writes to a sequential journal (or log) to defer or
batch updating the primary data repository, which involves
multiple disk access or writes (e.g., ext3/ext4fs). Database
systems, which are another class of persistent storage stacks
but run in the user space, manage their own data structures
using similar techniques and *sync system calls.

PM devices have precipitated changes in both the storage
software architecture and data structures. File systems use
the DAX subsystem (Figure 1) to export a PM-backed file
region to the application address space over mmap, so that the
application can access persistent data using load/storeCPU
instructions without DRAM buffer caches nor read/write
system calls (right arrow in the figure). To ensure persis-
tence, the application flushes the CPU cache into PM using
clflush(opt) instructions, which operate in a cache-line
granularity, instead of *sync system calls, which operate in
a block or page granularity. User-space PM storage stacks
(top rectangle in the figure) exploit those features while solv-
ing PM-specific challenges. Some works tackle read and/or
write efficiency, such as in-place update in a log-structured
merge tree [19] and optimization of B+trees [4], and some
tackle consistency problems caused by out-of-order CPU
cache flushes [6, 46, 21].

Ensuring storage properties, such as consistency, integrity,
and search and I/O efficiency is the primary source of the stor-
age stack overheads. For example, in addition to persistence
and consistency, file systems (e.g., zfs, btrfs, NOVA [44]
and SplitFS [16]) and databases (e.g., pDPM [41], SLM-DB [17]
and NoveLSM [19]) ensure integrity using checksums, and
use metadata like timestamps. Software overheads matter in
PM-based systems, because those are highlighted by the fast
storage medium access. This is also why many PM storage
systems rely on RDMA for networking [18, 45, 49, 27].

2.2 Network Stacks and Protocols
Network stacks have been improved since 2010, initially by
raw packet I/O frameworks, namely PacketShader [9] and
netmap [37], for user-space routers or middleboxes to sup-
port high packet rates over modern networks, 10Gbit/s and
beyond. Host TCP/IP stacks have been improved by better
multi-core scalability (Affinity Accept [34]), new APIs for
system call batching (MegaPipe [10]), streamlined datapath
(Stackmap [47] and TAS [20]) and lightweight user-space
stacks (mTCP [15] and Sandstorm [28]). Those stacks focus
on networking only, assuming the RPC-like applications that
do not serve persistent data.

Packets as Persistent In-Memory Data Structures HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

Diskmap [29], Reflex [22] and i10 [12] enable new net-
worked storage systems, but on block devices, which re-
quire on-disk data management (§ 2.1). PASTE [11] orga-
nizes packet buffers into a PM region, allowing applications
to persist data without data copy. However, storage systems
are also responsible for other properties, such as data orga-
nization optimized for target workloads, integrity to ensure
that data is intact over time, consistency typically provided
by transaction primitives, and timestamps.
Networked non-persistent in-memory key-value stores,

such as MICA [26], eliminate networking overheads using
kernel-bypass framework and custom UDP-based protocol.
However, these systems need custom clients and do not
support storage properties typically offered by persistent
storage systems, such as durability and crash consistency.

3 NETWORKING AND STORAGE OVERHEADS
To understand the impact of the software overheads incurred
to achieve storage properties, this section measures end-to-
end latency of storage stacks over the network. We divide
the overheads of networked storage systems into three: net-
working, persistence and data management overheads. Net-
working overheads consist of the network stack and protocol
processing, in addition to the network fabric latency. Per-
sistence overheads are the cost of storage medium access
to persist the application data. We define data management
overheads as the cost to achieve storage properties such as
consistency, integrity and data layout for read or write ef-
ficiency or flexibility. Relative data management overheads
are generally higher in PM-based systems than in disk-based
systems, because persistence overheads are lower.

The most important goal of this section is to confirm that
networking overheads are within the order of the other over-
heads in networked PM-based systems, and storage stacks
impact end-to-end performance; if these assumptions go
false, the TCP/IP networking would be unviable for the net-
worked PM systems.
Methodology. To understand the degree of those three over-
heads, we measure the round-trip time (RTT) that the client
sends awrite request to a remote serverwith different storage
properties and receives the application-level acknowledge-
ment. The communication protocol is HTTP over TCP. We
first measure networking overheads using the server appli-
cation to simply discard the request and return the response
as if the request was processed by the storage stack.

We thenmeasure the RTTwith a fully-fledged PM-optimized
storage stack (NoveLSM, described next) that implements
the storage properties of durability, integrity, consistency (on
crash recovery and concurrent access) and searchability (e.g.,
efficient range query support), and thus incurs persistence
and data management overheads. To obtain the persistence
overheads, we also measure the RTT with the same storage

stack but disabling the persistence operations by modify-
ing the source code. Subtracting the networking-only RTT
from this RTT indicates the data management overheads. We
obtain the breakdown of the data management overheads
by further modifying the storage stack to skip one or more
logical operations.
Network and storage stack. To highlight those overheads
in a state-of-the-art system, we use PASTE [11] for the net-
work stack, because it achieves comparable performance to
kernel-bypass stacks while using the matured kernel TCP/IP
implementations that includemodern TCP extensions, which
are missing in most of the kernel-bypass stacks. We use
busy-polling to optimize for latency and configure PASTE to
process data in DRAM, because NoveLSM, introduced next,
organizes data into PM.

We use NoveLSM [19] as the PM storage stack. NoveLSM
extends LevelDB, which is a write-optimized persistent key-
value store based on the log structured merge (LSM) tree,
designed for both spinning and solid-state disks. LevelDB
writes requests in memtable, which is a DRAM-backed table
whose data is also persisted in the log backed by a disk. To op-
timize for PM, NoveLSM replaces memtable with PM-backed
one without the log, which also implements new data struc-
tures for efficient search. Since we are interested in the data
management in the PM, we configure NoveLSM to not move
(a.k.a. compaction) the data to disks during the experiment.
We implement checksum calculation in NoveLSM; although
it is disabled in the current version of NoveLSM, it is enabled
in LevelDB to ensure data integrity.
Hardware and other software.The server is equippedwith
128 GB of RAM, 512GB of Intel Optane DC Persistent Mem-
ory with the App-Direct mode configuration, and two Xeon
Gold 5218R CPUs clocked at 2.10Ghz. The client is equipped
with two Xeon E5-2620v3 CPUs clocked at 2.40Ghz. Both ma-
chines connect to a switchwith an Intel XXV710 25 Gbps NIC,
and install well-tuned Linux kernel 5.9, disabling netfilter,
debugging features, hyper threading, deep CPU sleep states
and turbo boost. Both machines enable checksum offloading.
The server uses only one CPU core throughout the paper;
the client uses all the cores when multiple TCP connections
are used. The client runs the regular Linux stack and wrk as
the application to issue storage requests over one or more
TCP connections and measure the end-to-end latency. We
report average RTTs over 3s of continual requests.
Results. Table 1 shows the RTT and its breakdown of a 1KB
write request. The networking-only RTT is 26.71µs. When
the application stores the request in NoveLSM, the RTT in-
creases to 34.79µs, including 6.39µs of the data management
overheads and 1.94µs of persistence overheads. These results
show that data management overheads are significant.

Within 6.39µs of the data management overheads, prepar-
ing the LevelDB-specific request data structure takes 0.7µs,

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Michio Honda

Overhead Operation Time [µs]
Networking TCP/IP &HTTP in client and server,

and network fabric
26.71

Data mgmt. Request preparation 0.70
Checksum calculation 1.77
Data copy 1.14
Buffer allocation and insertion 2.78

6.39

Persistence Flush CPU caches to PM 1.94

Total 34.79

Table 1: Latency breakdown of RTT for a 1KB write
request. The mismatch (0.25µs) of the total and the sum is
because each of them is measured by separate requests.

1 25 50 75 100
0

250

500

750

La
te

nc
y

[μ
s]

1 25 50 75 100
0

50

100

Th
ro

ug
hp

ut
 [1

K
re

q.
/s

]

of Concurrent Connections

Net. + persist. Net. + data mgmt. + persist.

Figure 2: Latency and throughput of continual 1KB
writes over parallel persistent TCP connections. Data
management overheads reduce throughput by 9–28% and
increase latency by 11–41%.

and calculating the checksum for the value takes 1.77µs. In-
serting data involves allocating a PM-backed buffer, data
copy and linking the buffer into the storage data structure,
which is a persistent skip list in NoveLSM. This process takes
3.92µs including 1.14µs of data copy.

6.39µs of the data management overheads may seem low,
but this is untrue. Figure 2 plots RTT and throughput with
and without data management overheads over concurrent
connections or requests, which mimic multiple clients. The
former uses a simple application that copies and persists data
in the PM region without NoveLSM (thus no data manage-
ment overheads), and the latter uses NoveLSM. This measure-
ment shows that the data management operations reduce
throughput by 9–28% and increase latency by 11–42%.

The additional penalty in latency and throughput in com-
parison to the single connection case is due to the queue at
the server application that processes the TCP connections
with the requests in turn; an increased processing time (in
the storage stack) delays subsequent requests to be processed.
One might think the use of additional CPU cores, but in re-
ality the server receives far more concurrent connections,
resulting in a queue at each of the cores.

3.1 Implications
Those experiment results indicate that the data management
cost on top of the persistence overhead is significant in the
networked PM systems, even over regular TCP/IP networks.
Although the current experiment shows the networking la-
tency is still dominant, since both transport protocol and
network fabric are improving in latency, we believe the net-
working latency will be reduced (§ 5.2). Further, the NICs
keep improving; not only are they reducing latencies, but
also they are implementing new offload capabilities, such
as TLS encryption/decryption. Advanced NIC design will
further accelerate these trends [7, 40].

In the byte-addressable PM devices, fewer opportunities of
hardware offloading are available inside the storage device in
comparison to block devices, which are implemented as I/O
peripherals and often equipped with co-processors or accel-
eration engines [25, 38, 48]. The use of separate accelerator
devices would not be an option, because data transfer to and
from these devices over the PCIe bus could incur additional
overheads. Further, extending NoveLSM to use the persistent
buffer offered by PASTE could reduce the data copy over-
head, which is 1.14µs (Table 1), but not other components in
the data management overheads, which amount for 5.25µs.
Therefore, we argue that the most promising approach

to reducing the data management overhead of PM storage
stacks be to exploit the NIC or network stack features where
all the storage data go through.

4 OPPORTUNITIES IN NETWORKING
The design goal of storage stacks is to enable a reliable, yet
flexible data repository on top of the faulty, dumb storage
devices, such as disks and PMs. These storage devices are
faulty, because their data can corrupt either silently [2, 8]
or with an error on access [3], and writes can be incomplete
even after the device returns the completion signal to the
software [23]. They are also dumb because they reorder flush
commands, defying consistency guarantees [43, 5]. Storage
stacks employ many techniques (§ 2.1) in software to offer
reliability over such storage devices as efficiently as possible.
This motivation somewhat resembles the design goal of

transport protocols and host network stacks. TCP was de-
signed to offer reliability over the Internet that is faulty,
because the packets can be lost or reordered, and dumb, be-
cause the networks do not perform many tasks other than
delivering packets in a best-effort manner. Host network
stacks also have been designed to cope with various network
conditions and events efficiently, such as organizing pack-
ets arrived or acknowledged out-of-order, maintaining large
data that the user wishes to send but does not fit into the path
MTU, scheduling packet transmissions at the intended time,
and sharing the packets between multiple consumers, such
as receiver application and packet capture pseudo device.

Packets as Persistent In-Memory Data Structures HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

ext page[0]
ext page[1]refcount

hw timestamp

next/prev

data refcount

head/off/tail ptrs

struct	skb_shared_info

struct	sk_buff

pagesclone

tstamp
socket/NIC ptrs

Figure 3: Linux network packet metadata (sk_buff).
Gray parts indicate packet headers and data.

We therefore examine what and if networking features
could be repurposed to implement storage properties. We are
motivated particularly because more andmore storage stacks
are now going to be built on top of PM whose performance
characteristics and access methods resemble those of DRAM,
meaning that the data is organized into persistent in-memory
data structures rather than on-disk ones (§ 2.1).

4.1 Packet Representation in Network Stacks
A packet arriving at the NIC or application data being written
in the network stack is accompanied by a network metadata
structure (sk_buff in Linux and mbuf in FreeBSD). Figure 3
illustrates the metadata that represents a single packet data.
As shown in the figure, the packet data can span across multi-
ple memory pages to accommodate arbitrary sized data. The
metadata structure contains reference counts to the packet
data and metadata, timestamps provided by either software
or NIC, links to other metadata instances, and pointers to
the vantage points in the packet data or kernel subsystems,
including protocol headers, sockets and network devices.
Packet metadata can be stateful. For example, when the

TCP implementation transmits a segment, it passes the packet
metadata to the IP layer which further passes them down
to the NIC driver. However, the TCP implementation needs
to keep the packet until the segment is acknowledged by
the receiver. This is achieved by the clone mechanism. A
clone points to the same packet data as the original with
an additional reference count (data refcount in the figure).
Although the lower layer protocols and driver update or re-
lease the cloned metadata, the packet data is kept intact until
the final reference, which is hold by the transmission queue
of the TCP implementation, is released. Therefore, the TCP
implementation can retransmit the packet in the event of
packet loss. These features could be useful to share the data
between the network stack and storage stack, because the
storage stack must maintain the metadata and data indepen-
dently from its transient state (e.g., in-transmission) in the
network stack.

The packet metadata is released and headers are stripped
when the data is passed to the application (e.g., read), which
acts as a storage stack (Figure 1). The storage stack, includ-
ing NoveLSM used in the experiment in § 3, then examines
the data. If the request is a get, it searches for the database,

otherwise it inserts the key-value pair to its private data
structures, such as a persistent skip list, with its own meta-
data, such as checksum and timestamp. If the storage stack
retrieved the data with packet metadata, many of these data
management tasks could be obviated or simplified.

4.2 Enabling Storage Properties
How would the networking features useful to accelerate
realistic PM storage stacks? We take a look at NoveLSM used
in our case study in § 3 and file systems, and find several
opportunities.
NoveLSM implements a persistent, mutable skip list in

the PM to quickly find a key requested by a get request.
This data structure is implementable using packet metadata,
although some additional list entries may be needed, de-
pending on the number of levels. Linked lists with packet
metadata are common. For example, a socket buffer is a
linked list of packet metadata. Also, a TCP receiver main-
tains out-of-order segments in a red-black tree to quickly
identify and retrieve any of these segments when it receives
a relevant in-order segment. This is a good example that
exhibits flexibility of packet metadata to build an efficient
in-memory data structure.

Further, LevelDB, which NoveLSM extends, computes the
checksum of the data when storing the data. NoveLSM could
obviate this task using the checksum values available in the
TCP header that has carried the request over the network. As
checksumming is known to be expensive, CompoundFS [36]
proposes to use an in-storage embedded processor. How-
ever, since such a processor is unavailable in PM devices.
Therefore, the use of TCP checksum computed by the NIC
hardware appears a more promising option. This could save
1.77µs of the request processing (Table 1).

NoveLSM employs a user-space persistent memory alloca-
tor. It could obviate this allocator if the network buffer and
metadata allocators are exported to the storage stack; as dis-
cussed in the previous subsection, a network metadata can
point to one or more external buffers. If NoveLSM organized
its data into the packet data structures, it could reduce the
costs of sending data to the network, because it can avoid
memory deallocation in its own allocator and memory allo-
cation inside the network stack. This could be significant, as
[36] reports high memory allocation overheads in both the
user and kernel space with LevelDB.

To exploit those opportunities, we need to extend the net-
work stack. The first step could be persisting the packet
metadata in the PM device. We also need to locate them after
a reboot, otherwise persisted data is useless. One straight-
forward method to enable persistent packet metadata is to
extend PASTE to name and persist the packet metadata in
a PM-backed file, in addition to the packet data. Further,

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Michio Honda

we need to define new APIs to share the packet metadata
between the stack and application.
File systems designed for PM devices are another ex-

ample that could benefit from persistent network metadata.
Using persistent network metadata to ensure durability, con-
sistency, timestamp and integrity, sending or receiving file
data could be accelerated. File systems manage on-disk data
using metadata (i.e., inode) that typically contains name,
timestamp, checksum and links that point to either on-disk
data blocks or other metadata (§ 2.1). Most of these infor-
mation and structures can be achieved by packet metadata
if allocated in a PM device. Therefore, current inode struc-
tures would be simplified, and packet metadata blocks will
be maintained by the file system alongside inode blocks.

When the data is originated by the application (e.g., write),
the file system would also allocate a packet metadata from
its metadata block; this application data can be larger than a
single packet size, because it can be split into multiple MTU-
sized packets on network transmission, either by software
(GSO) or hardware (TSO). Likewise, the file system could
manipulate the NIC to allocate the packet metadata and data
buffer from its packet-metadata and data blocks, respectively.
Efficiently routing packets to an intended file could need
hardware support, such as a programmable network chip or
embedded CPUs in SmartNICs.

5 RESEARCH AGENDA
Enabling aforementioned networked storage stacks needs to
address a number of research challenges.

5.1 Packet/Storage Metadata Structures
As we observed in the previous discussion, extending or
redesigning packet metadata to be persistent is essential to
upcycle packets for PM-based storage stacks, but it must be
done carefully. It appears feasible to persist packet metadata.
This is because, although access latency to a PM device is
higher (346ns [14]) than DRAM (70ns), packet metadata is
designed to be compact and cache friendly to minimize cache
misses in the network stack data path, as the network stack
needs to process millions of packets per second. However, at
the same time, we may need further optimization, because
the impact of a cache miss is higher than DRAM.
User-space TCP/IP stacks typically use smaller metadata

than kernel ones to achieve high performance, at the expense
of support for fewer network protocols and subsystems, such
as modern TCP extensions and packet filters, than kernel
stacks. Designing a cache-efficient packet metadata will be
even more important in PM devices to low average and tail
processing latency.
In addition to the size of metadata, ensuring crash con-

sistency is also challenging. Although packet metadata will

be persisted by the application (or intelligent NIC), their ref-
erence to external objects, such as socket and other packet
metadata, must be kept consistent so that the storage data
can be recovered after a reboot.

Finally, interaction between the storage and network stacks
needs new abstractions beyond the POSIX APIs. Sharing
packet metadata is relatively straightforward or could be
done by memory mapping. However, sending or receiving
packets will need new APIs. In FreeBSD, there exist in-kernel
APIs that can pass the packet metadata that points to data
to a network socket (e.g., sosend), which could be useful to
implement as a system call interface.

5.2 NIC Offloading and Transport Protocols
Utilizing NIC offloading capabilities significantly improves
networking performance, and if the offloaded processing re-
sults are also utilized by the storage stack, the benefit would
be doubled. Checksum offload, TCP segmentation offload
and hardware timestamps are straightforward examples. As
discussed in § 4, some use cases, such as file systems, will
need advanced NIC features, most likely those in SmartNICs,
to route incoming packets to the specific PM address. Serial-
ization in the NIC [35, 42, 13] enhances zero-copy in terms
of reducing application data movement. Our approach could
complement it when it is used for PM and the NIC is extended
to export packet metadata.
New transport protocols will further highlight the bene-

fit of repurposing packets, because the networking latency,
which is 26.71µs with TCP in our experiment (Table 1), will
be lower. The Linux kernel implementation of Homa [33],
a new reliable transport protocol specifically designed for
data center networking, uses regular Linux packet metadata
and TCP headers to exploit the NIC offloading feature with
unmodified drivers. This implies that the approach of repur-
posing the networking features is feasible not only for TCP
but also future transport protocols.

6 CONCLUSION
We characterised networking, persistence and data manage-
ment overheads of a PM storage stack in TCP/IP networking.
We identified that data management overheads are signifi-
cant, and thus proposed a new approach to reducing them
by repurposing the networking features available in the net-
work protocols and stacks to implement storage properties,
such as integrity, consistency and search efficiency. We be-
lieve this is an important step for networked storage systems
to benefit from PM devices without relying on RDMA.

ACKNOWLEDGMENTS
I am grateful to anonymous HotNets reviewers. This work
was in part supported by EPSRC grant EP/V053418/1.

Packets as Persistent In-Memory Data Structures HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Joao Taveira Araujo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa.

2018. Balancing on the edge: transport affinity without network state.
USENIX NSDI.

[2] Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Garth R Goodson, and Bianca Schroeder. 2008. An
analysis of data corruption in the storage stack. USENIX FAST.

[3] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,
and Jiri Schindler. 2007. An analysis of latent sector errors in disk drives.
ACM SIGMETRICS.

[4] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main
memory. VLDB Endowment.

[5] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic crash
consistency. ACM SOSP.

[6] Joel Coburn et al. 2011. Nv-heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. ACM ASPLOS.

[7] Alex Forencich, Alex C Snoeren, George Porter, and George Papen.
2020. Corundum: an open-source 100-gbps nic. IEEE FCCM.

[8] Laura M. Grupp et al. 2009. Characterizing flash memory: anomalies,
observations, and applications. IEEE/ACM MICRO.

[9] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Packet-
shader: a gpu-accelerated software router. ACM SIGCOMM.

[10] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. Megapipe: a new programming interface for scalable network i/o.
USENIX OSDI.

[11] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.
2018. PASTE: a network programming interface for non-volatile main
memory. USENIX NSDI.

[12] JaehyunHwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP≈RDMA:
cpu-efficient remote storage access with i10. USENIX NSDI.

[13] Stephen Ibanez et al. 2021. The nanopu: a nanosecond network stack
for datacenters. USENIX OSDI.

[14] Joseph Izraelevitz et al. 2019. Basic performance measurements of the
intel optane DC persistent memory module. CoRR. arXiv: 1903.05714.

[15] Eun Young Jeong et al. 2014. Mtcp: a highly scalable user-level tcp stack
for multicore systems. USENIX NSDI.

[16] Rohan Kadekodi et al. 2019. Splitfs: reducing software overhead in file
systems for persistent memory. ACM SOSP.

[17] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and
Young-ri Choi. 2019. Slm-db: single-level key-value store with persistent
memory. USENIX FAST.

[18] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges
and solutions for fast remote persistent memory access. ACM SoCC.

[19] SudarsunKannan, Nitish Bhat, AdaGavrilovska, AndreaArpaci-Dusseau,
and Remzi Arpaci-Dusseau. 2018. Redesigning lsms for nonvolatile
memory with novelsm. USENIX ATC.

[20] Antoine Kaufmann et al. 2019. Tas: tcp acceleration as an os service.
ACM EuroSys.

[21] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. 2016. Nvwal: exploiting nvram in write-ahead logging.
ACM ASPLOS.

[22] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Remote
flash ≈ local flash. ACM ASPLOS.

[23] Andrew Krioukov et al. 2008. Parity lost and parity regained. FAST.
[24] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports. 2020.

Pegasus: tolerating skewed workloads in distributed storage with in-
network coherence directories. USENIX OSDI.

[25] Shengwen Liang et al. 2019. Cognitive SSD: a deep learning engine for
in-storage data retrieval. USENIX ATC.

[26] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: a holistic approach to fast in-memory key-value stor-
age. USENIX NSDI.

[27] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
rdma-enabled distributed persistent memory file system. USENIX ATC.

[28] Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network
stack specialization for performance. ACM SIGCOMM.

[29] Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stew-
art. 2017. Disk|crypt|net: rethinking the stack for high-performance
video streaming. ACM SIGCOMM.

[30] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.
Fabry. 1984. A fast file system for unix. ACM Trans. Comput. Syst.

[31] Radhika Mittal et al. 2018. Revisiting network support for rdma. ACM
SIGCOMM.

[32] Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel: isola-
tion and sharing in disaggregated rack-scale storage. USENIX NSDI.

[33] John Ousterhout. 2021. A linux kernel implementation of the homa
transport protocol. USENIX ATC.

[34] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Mor-
ris. 2012. Improving network connection locality on multicore systems.
ACM EuroSys.

[35] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. 2021.
Breakfast of champions: towards zero-copy serializationwith nic scatter-
gather. ACM HotOS.

[36] Yujie Ren, Jian Zhang, and Sudarsun Kannan. 2020. Compoundfs: com-
pounding i/o operations in firmware file systems. USENIX HotStorage.

[37] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet i/o.USENIX
ATC.

[38] Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: designing
in-storage computing system for emerging high-performance drive.
USENIX ATC.

[39] Vishal Shrivastav et al. 2019. Shoal: a network architecture for disag-
gregated racks. USENIX NSDI.

[40] Brent Stephens, Aditya Akella, and Michael M. Swift. 2018. Your pro-
grammable nic should be a programmable switch. ACM HotNets.

[41] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
persistent memory and controlling them remotely: an exploration of
passive disaggregated key-value stores. USENIX ATC.

[42] Adam Wolnikowski et al. 2021. Zerializer: towards zero-copy serializa-
tion. ACM HotOS.

[43] Youjip Won et al. 2018. Barrier-enabled IO stack for flash storage.
USENIX FAST.

[44] Jian Xu and Steven Swanson. 2016. NOVA: a log-structured file system
for hybrid volatile/non-volatile main memories. USENIX FAST.

[45] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. Filemr: re-
thinking RDMA networking for scalable persistent memory. USENIX
NSDI.

[46] Jun Yang et al. 2015. Nv-tree: reducing consistency cost for nvm-based
single level systems. USENIX FAST.

[47] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.
Stackmap: low-latency networking with the os stack and dedicated nics.
USENIX ATC.

[48] Teng Zhang et al. 2020. Fpga-accelerated compactions for lsm-based
key-value store. USENIX FAST.

[49] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: a reliable and highly-available non-volatile memory
system. ACM ASPLOS.

https://arxiv.org/abs/1903.05714

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Persistent Storage Stacks
	2.2 Network Stacks and Protocols

	3 Networking and Storage Overheads
	3.1 Implications

	4 Opportunities in Networking
	4.1 Packet Representation in Network Stacks
	4.2 Enabling Storage Properties

	5 Research Agenda
	5.1 Packet/Storage Metadata Structures
	5.2 NIC Offloading and Transport Protocols

	6 Conclusion

