
Designing a Storage Software Stack for Accelerators
Shinichi Awamoto∗†, Erich Focht‡ and Michio Honda

†NEC Labs Europe, ‡NEC Deutschland, University of Edinburgh

Abstract
Although modern accelerator devices, such as vector engines
and SmartNICs, are equipped with general purpose CPUs,
access to the storage needs the mediation of the host kernel
and CPUs, resulting in latency and throughput penalties. In
this paper, we explore the case for direct storage access inside
the accelerator applications, and discuss the problem, design
options and benefits of this architecture. We demonstrate
that our architecture can improve throughputs of LevelDB
by 12–89%, and reduce the execution time by 33–46 % in
a bioinformatics application in comparison to the baseline
where the host system mediates the storage accesses.

1 Introduction

While CPUs have increasingly integrated more specialized
units and instructions, economics and scaling demand suggest
that more work and even market share is being pushed towards
the peripheral devices. The resulting dispersion increases the
relevance of accelerator devices equippedwith system-on-chip
(SoC) as a co-primary compute resource.

Leading commodities of SoC-based accelerators are Smart-
NICs and vector processors. Since these devices, unlike GPUs,
implement general purpose processor cores in addition to spe-
cialized compute units, tiered memory and I/O ports, they can
locally execute the vast majority of application logic. The re-
sulting generality largely expands application domains; recent
work demonstrates that distributed applications, consensus
algorithms, data analytics and storage applications appreciate
SoC-based accelerator devices, improving throughput, latency
and energy efficiency [11, 12].
The current SoC-accelerator applications are limited to

stateless processing. Access to stateful data resident in persis-
tent storage is mediated by the host OS that runs on CPUs and
manages storage media. Since storage devices have been im-
proved in both throughput and latency, this device-CPU-device
communication overhead is high enough to impact response
time (Section 2). A recent approach in 2019, iPipe [11],masks
this overhead by reconciling other applications, but this ap-
proach imposes redesigning the applications, and does not
improve actual latency and throughput of individual applica-
tions constrained merely by the said overhead. We want to
tackle these issues and therefore aim at providing a stream-
lined, yet simple abstraction of persistent storage to accelerator
applications.

∗Currently at IIJ.

In this paper, we explore the case and need for direct storage
access in the SoC-based accelerator devices in designing
Hayagui, our storage software stack. Although Hayagui
is implemented in a vector engine accelerator device, its
architecture could apply to other classes of SoC devices, such
as SmartNICs, because they exhibit similar characteristics in
performance andarchitecture (Section 2.1).Hayagui ports and
augments a user-space NVMe driver to allow the accelerator
applications to access the storage medium without the host
CPU or OS being involved. On top of it, Hayagui implements
its own file system and ports LevelDB to provide useful
interfaces to the applications.
We show that Hayagui can accelerate a bioinformatics

application that reads genome sequence data generated by a
DNA sequencer device and matches the data against reference
data, for example, to find mutations. This application utilizes
the vector engine accelerator that we use throughout this paper
to take advantage of its massive parallelism, but suffers from
slow host storage access.

This paper discusses following research questions:
1. What are storage performance characteristics of the ac-

celerator?
2. What would the storage stack design for the accelerator

look like?
3. What application could benefit from such a storage stack?
4. What are challenges to design accelerator storage stacks?

2 Motivation
Storage performance matters for SoC-based accelerator appli-
cations, because they must read data from the storage medium
before performing efficient data parallel jobs, or write back
compute results that will be used by the same or other appli-
cations. This also means that the higher the compute capacity
is, the more the storage I/O would dominate the end-to-end
execution time.

2.1 System Model
We assume SoC-based accelerator devices, attached to a PCIe
bus of a commodity system, and accompanied by general
purpose cores that are able to execute entire application
codes. These codes are compiled by either open or proprietary
compilers, and may include device specific code to take the
advantages of specialized compute units on the accelerator
device. The accelerator cores entirely operate in a user space
context; system calls will be redirected to the host kernel that
runs on the host CPUs and centralizes the system resources,
such as storage and networks.

Kernel

User
Accel. App

HW

Accel. OS

Linux

Host CPU

Disk

Accel.
Driver

Accel. Device

glibc

Proc. Cores
PCIe Hub

Accel. FS
LevelDB

Direct I/O Engine

Accel. App glibc

Disk

HayaguiRedirect

PCIe
Hub

Proc. Cores
Accel. Device

Figure 1: System Model and Software Architecture. In
today’s redirect architecture (left), I/O requests issued by
accelerator applications are handled by the host CPU.Hayagui
(right) bypasses the host CPUs by running the whole stack
including the device driver within the accelerator. Gray arrows
indicate data paths from the storage to the application.

Figure 1 illustrates this system model. The accelerator
OS (AOS), which proxies system calls issued by accelerator
applications, would reside in the host kernel, but we believe
many accelerators vendors, as with that of our accelerator,
adopt the user space AOS model because of simplicity and
integrity with other building blocks, such as initialization of
program execution.

Our accelerator, NEC SX-Aurora TSUBASA [18], follows
this system model. It is equipped with eight pairs of a gen-
eral purpose core and a vector processor core, 16 MB of
last-level cache, 48GB of on-chip HBM2 based DRAM and
1.2 TB/s of the total memory bandwidth. This accelerator
is currently used for image processing in the medical sector,
risk calculation in the financial sector, TensorFlow acceler-
ation in the logistics sector, and weather prediction in the
German weather forecasting service. Komatsu et al. [8] report
the parallelism and memory bandwidth advantages of this
accelerator in large-scale simulations. Both, LLVM-based
open-source compilers [16], which we use throughout this
paper, and closed-source ones [18] are available to compile
the accelerator applications written in regular C/C++. The
vendor also provides a glibc library optimized to take the
advantages of vector processing units. AOS maintains user
processes that proxy system calls issued by their corresponding
accelerator applications, using the accelerator driver that deliv-
ers interrupts and performs DMA to and from the accelerator
device.

2.2 Accelerator Data Management Problem
The process of executing system calls is clearly inefficient.
Every call must travel the PCIe bus at least twice between the
accelerator device and the host CPU, and cross the user-kernel
boundary twice between the kernel and the AOS. Moreover,
timely execution of the system call requires that host-side
CPUs be dedicated to AOS processes. To confirm this, we

1 200 400 600 800 1000
read/write [KB]

0

5

10

15

20

Th
ro

ug
hp

ut
 [G

B/
s]

1 200 400 600 800 1000
write+fdatasync [KB]

0.0

0.1

0.2

0.3

0.4

0.5

Accel (read)
Host (read)

Accel (write)
Host (write)

Accel (sync)
Host (sync)

Figure 2: I/O Throughput in Accelerator and Host. In
the accelerator, read, write and write+fdatasync are 92–
99%, 86–99% and 21–34% slower, respectively.

Type Bacteria Killfish Mouse

Reference sequence 3.2 MB 997 MB 2.7 GB
Target sequence 2.1 GB 7.0 GB 15.0 GB

Table 1: Size of DNA Sequence Data. Target sequences read
by the DNA sequencer are much larger than the reference
ones, because they contain extra data such as quality scores.

measure system call latency inside the accelerator using a
tight loop of cheap fcntl. We observe 42748 ns per call,
whereas the same call takes 105 ns in the host, confirming
420× higher system call costs, from which small data transfers
could suffer1.

Moreover, data must be transferred multiple times. In Fig-
ure 1 left, the light gray arrow indicates the data movement
for a read() system call. The host kernel reads data from the
disk, then moves it to its user space where the AOS runs. The
AOS then programs an accelerator DMA engine through a
kernel module such that the accelerator can transfer the data
to its memory.

Figure 2 plots throughput of read, write and sync operations
that run synchronously in a single thread. As a highlight from
the left figure, in order to read 1 MB of data from the kernel
buffer cache using a single read() system call,we observe that
it takes 1087 µs (1000000/(0.9197×1000)) in the accelerator,
while it takes only 77 µs in the host, demonstrating the data
copy and transfer costs. These costs are relevant even in the
presence of access to the storage medium. As in Figure 2 right,
writing 1 MB of data to the NVMe SSD using a write()
followed by fdatasync() needs 2937 µs on the accelerator,
while it takes 1847 µs on the host. Since the throughput in the
accelerator is constrained by both storage medium and data
transfers, the difference from the host case becomes larger as
the I/O size increases.

Time [s]
Operation Cores Bacteria Killfish Mouse

Load reference sequence both 0.032 0.010 2.282
Index reference sequence vec. 0.634 0.259 33.859
Save reference index gen. 0.093 0.101 2.019
Load reference index gen. 0.028 0.101 1.463
Load target sequence both 19.997 53.943 113.768
Matching vec. 1.500 1.354 3.326

Total 22.284 55.768 156.717

Table 2: End-to-End Genome Sequence Matching Time.
Each step uses general-purpose cores (gen.), vector processor
cores (vec.) or both. The application spends most of the time
to load the target data. See Table 1 for the size of data.

2.3 Case Study: Genome Sequence Matching
Attractive use cases of SoC-based accelerator devices are
bioinformatics applications that process data generated by a
DNA sequencer apparatus and stored in the disk. One essential
operation is genome sequence matching. This task uses two
DNA sequences: a reference sequence that describes particular
species and a target sequence that is going to be analysed, for
example, to find mutations, based on the reference sequence.
The genome data is represented as text whose size varies

depending on species. As shown in Table 1, the reference
sequence of bacteria, killfish and mouse is 3.2 MB, 997 MB
and 2.7 GB in size, respectively; the target sequence of those
species is 2.1 GB, 7.0 GB and 15.0 GB in size, respectively.

The genome sequencematching application can be executed
end-to-end inside the accelerator thanks to its general-purpose
cores alongside the specialized ones. It first reads the refer-
ence sequence in small batches (e.g., 64 KB each) using the
general purpose cores, wherein delimiters are located using
the specialized cores to speed up the later indexing process.
The application then indexes the outputs, so that the match-
ing process can access arbitrary regions (base pairs) of the
sequence in constant time. The resulting index is filed in the
disk, and read again before the target sequence is analysed.
The application then loads the target sequence in the same way
with the reference sequence (i.e., with locating delimiters),
and matches the data against the indexed reference. It should
be noted that loading and saving data involves, respectively,
read and write system calls redirected to the host.
Table 2 shows the breakdown of the end-to-end execution

time and which of general purpose or vector processing cores
are used in each step. Since the application uses the advantages
of the vector processing engine for locating delimiters, index-
ing sequences and matching the index and target, it spends
most of the time (72–96%) to read the target sequence data.
The time to read the reference sequence of killfish is shorter
than that of bacteria because of the larger number of delim-
iters in the bacteria data. We conclude that the storage I/O

1All the experiments in this section use the setup detailed in Section 5.

1 200 400 600 800 1000
read/write [KB]

0
2500
5000

10000

15000

20000

25000

La
te

nc
y

[μ
s]

read (ramfs)
write (ramfs)
read (ext4-ramdisk)
write (ext4-ramdisk)

Figure 3: I/O Latencies of LKL in the Accelerator.

inefficiencies significantly impact on the end-to-end latency
and throughput of such accelerator applications.

3 Design Space
Since redirecting storage I/O requests and data to the host
comes at a significant cost and impairs accelerator applica-
tions, we need to design a streamlined I/O stack between the
application and the storage medium.
Recall that the entire application code can be executed

using the general purpose core of the SoC-based accelerator,
and their system calls are redirected to the host that manages
system resources, including I/O peripheral devices. Thus, it
would be an option to run an OS kernel inside the accelerator,
as with Multikernel [3] and Popcorn Linux [2]. Unfortunately,
since our SoC-based accelerator has no kernel context, we
cannot consider this design option.
Another option is to run a library operating system that

ports a full-fledged OS kernel like Linux in the user-space,
alongside the accelerator applications. However, this approach
would result in poor performance due to the overheads of the
OS kernel code, including the system call, file system and
block layer, which are generic and large. These overheads
could be particularly high in the form of library OS, because
many kernel features, such as interrupts, kernel threads and
synchronization primitives, must be emulated.
Nevertheless, in order to see the feasibility of a general

purpose library OS in the accelerator, we ported the Linux
Kernel Library (LKL). Figure 3 plots the read and write
performance on ramfs, which is mainly constrained by the
virtual file system and system call emulation because of
the simple file system logic that does not implement any
persistence property or block device organization, and that on
ext4 formatted on a ramdisk, which indicates the overheads
of a modern file system logic in comparison to the ramfs
performance. Since the latencies of 107–5310 µs to read or
write 1–1000 KB of data on the ramfs are clearly high, we
reject the option to run LKL in the accelerator. Further, the
high write overheads with ext4 imply the need for a file
system designed specially for the accelerator.

The other option is buffer cache sharing between the host ker-
nel file system and the accelerator device, as with GPUfs [21]

and libveaccio [5]. Although this approach allows the name
space to be shared between the host and accelerator applica-
tions, they require data to be loaded from the storage medium
to the host-side memory. Since the SoC-based accelerators,
unlike GPUs, are equippedwith general purpose cores and thus
can execute the entire application code, we examine different
approaches where the accelerator device directly accesses the
storage medium to minimize the host CPU usage.

4 Hayagui Architecture

To understand the fundamental performance benefit of the
direct access architecture, we begin with minimalistic soft-
ware components, primarily focusing on key value stores and
genome sequence analysis applications. This approach en-
ables bottom-up design, taking into account microarchitectural
weaknesses of the general purpose cores of the accelerator, and
opportunities of exploiting the specialized engines. Therefore,
our approach could be useful when designing an I/O software
stack for other SoC-based accelerators.

The right side of Figure 1 illustrates our architecture which
we call Hayagui. The main components are the Direct I/O
Engine that enables direct access to the storage medium, the
Accelerator File System that manages on-disk data layout
and serves buffer caches, and LevelDB that provides simple
key-value store interfaces. The applications that use LevelDB
as their storage backend do not need to be modified to use
Hayagui. In the rest of this section, we briefly describe these
components.

Direct I/O Engine. Hayagui resorts to the user space de-
vice driver, because the kernel context is unavailable in the
accelerator and this approach would allow us to implement
minimalistic higher level functionality. Hayagui extends UN-
VMe [15]; Intel SPDK [7], another user-space storage device
driver for high performance, was also considered, but we ruled
it out because of its large software base that could be, at least
partially, incompatible with performance characteristics of the
accelerator devices. We thus set off designing our I/O engine
by carefully extending the smaller base system.

We rely on the uio framework to grant PCIe register access
to the user-space context of the accelerator. Although the SSD
device registers are mapped into the host address space at
the system boot time, the direct I/O engine can access these
registers using PCIe APIs provided by the accelerator vendor
(ve_register_pci_to_vehva() on NEC SX-Aurora [14]).
Although our current design initializes the device inside the
accelerator, we may revise this process to do so at the host
side so that system administrators can enforce policies, such
as access control, to accelerator applications. We implement
a DMA buffer allocator used by UNVMe, because its default
allocator, which is the vfio framework, is unavailable in the
accelerator. Our allocator is based on a buddy system, because
it is trivial to map a physically contiguous memory region
into the user space in our accelerator. Our allocator also relies

on the APIs to register DMA buffers provided by the vendor
(ve_register_mem_to_pci() [14]).

Accelerator File System. As we observed in Figure 3, file
system design appears crucial in the accelerator environment.
UNVMe provides low-level block I/O commands on DMA-
capable memory claimed by our memory allocator. I/O is
asynchronous, and its completions are detected by the noti-
fication API similar to POSIX poll. Running applications
directly on top of UNVMe interfaces is inconvenient, because
it does not name or organize data, nor does it manage read or
write buffer caches.

Data Blocksinode BlocksOn-Disk Layout
DMA-Capable Buffers

Hash Table (H(offset))
File1 File2

Figure 4: Accelerator File System.

Our accelerator file system (AccelFS) currently resembles
a conventional ext2 file system in on-disk layout, as inode
blocks directly or indirectly point to data blocks. Figure 4
depicts our on-disk layout and buffer cache management. The
DMA-capable buffers, backed by the accelerator DRAM and
mapped into the host address space, are tracked against dirty
state. We currently use 8 KB for block size, and allocate at
most 16 cache blocks to each file. Since dynamic memory
allocation and linked-list manipulation appear expensive in
the accelerator core, we employ a per-file hash table to look
up a buffer cache for a given file offset. We will optimize this
buffer cache management to take the advantages of vector
processing engine, as well as on-disk data management that
we identified as important in Section 3.

Key Value Store Interface. Since many applications today
use key-value stores as their storage backend, we ported
the popular LevelDB on top of our accelerator file system.
LevelDB is a write-optimized, embeddable persistent key-
value store based on the Log Structured Merge (LSM) tree. It
supports set and get queries, and range queries. LevelDB
organizes data into multiple levels in which each grows larger
than the previous ones. Each level has one or more sstables,
where eachcontains keys andvalues sorted for search efficiency.
When the highest level becomes full, the compaction process
reorganizes the sstables into the next level by creating new
ones. New data is stored in a memtable backed by DRAM and
write-ahead log is backed by persistent storage.

Since LevelDB generates a number of files, including oper-
ation log, WAL and sstables, we cannot run LevelDB directly
on our Direct I/O Engine, instead, our AccelFS supports these
files, persisting and caching the data as LevelDB wishes.

LevelDB has a modular backend architecture. The memory
backend is the fastest but data is not persisted. The POSIX
backend manipulates data using POSIX system calls. We
chose to implement a new backend that uses AccelFS.

1 200 400 600 8001000
read/write [KB]

0

250

500

750

1000

1250

La
te

nc
y

[μ
s]

1 200 400 600 8001000
write+sync [KB]

0

500

1000

1500

2000

2500

3000

DirectIO (read)
AccelFS (read)
Redirect (read)

DirectIO (write)
AccelFS (write)
Redirect (write)

DirectIO (sync)
AccelFS (sync)
Redirect (sync)

Figure 5: I/O Latency of Direct I/O Engine and AccelFS.
Direct I/O Engine and AccelFS achieve lower latencies than
Redirect (Direct I/O: 74–87% in read, 62–99% in write and
20–46% in sync. AccelFS: 64–95% in read, 67–97% in write
and -1–42% in sync).

5 Experimental Results

This section presents how our architecture improve storage per-
formance in a series of experiments. Our prototype is publicly
available at https://github.com/liva/hayagui.

Hardware, OS and compiler. We use a single rack-mount
server equippedwith a 12-core IntelXeonGold 6126 processor
clocked at 2.60 GHz and 96 GB of RAM. The server runs with
CentOS 7.5 Linux kernel 3.10.0, and disables hyperthreading
and all the CPU sleep states. It installs a single NEC SX-
Aurora TSUBASA accelerator device and Samsung EVO 970
NVMe SSD device. All the accelerator code is compiled by
LLVM1.4.0 for NEC SX-Aurora VE, an open-source compiler
implemented as LLVM backend [13].

How does the direct I/O architecture improve storage I/O
performance? Figure 5 plots latency of read, write or sync
operation measured by a single threaded tight loop; next
request starts after the completion of the previous one. In
the DirectIO cases, reads always read data from the storage
medium because buffer caches are not available. Writes issue
I/O requests, but persistence is not guaranteed. Syncs explicitly
flush written data, thereby taking much longer than the other
operations. In the AccelFS cases, reads always read new data
from the storage medium, although it looks up the buffer
caches (and fails). In the system call redirection cases, we use
read, write and write+fdatasync. The key take away is
that direct I/O significantly improves performance in all the
operations, and AccelFS incurs little overhead.

How does Hayagui bring the benefits into a realistic stor-
age system?We measure performance of LevelDB that runs
in the accelerator with or without Hayagui, using db_bench
to generate sequential and random access workloads. Figure 6
plots per-request latencies, and shows that Hayagui improves
the request latencies by 33–81%. The margins largely differ de-
pending on both request sizes and workloads. This is because

both system call costs, which are 42 µs per call (Section 2.2),
and data copy costs (see the same section) are relevant. In
baselines, reads are often faster than the system call costs
i.e., < 42 µs, because of the requested data available in the
memtable of LevelDB.

As we have understood the performance of individual oper-
ations, we now evaluate Hayagui against realistic workloads
using the C++ variant [19] of YCSB [4] benchmark tool
running inside the accelerator. Figure 7 plots the results and
we observe 12–89 % of improvements. Therefore, we con-
clude that, despite the additional software overhead, Hayagui
significantly improves storage system performance.

How does Hayagui improve a realistic accelerator appli-
cation? In Section 2.3, we observed that a bioinformatics
application that runs in the vector engine accelerator spends
the vastmajority of time in reading data from the disk (Table 2).
We thus ported the same application to use Hayagui. Since
this application reads only a few files, we run this application
directly on top of our Direct I/O Engine.
Figure 8 plots the end-to-end execution times of the ap-

plication against the three species used in Section 2.3 with
or without Hayagui. Hayagui reduces the execution time
by 33–46% or by 8–53 seconds. These results demonstrate
that Hayagui accelerates a realistic application and it serves
large data efficiently, minimizing data transfers between the
application and storage medium.

6 Related Work
Near storage computing. INSIDER [20], CognitiveSSD [10]
andX-Engine [23] implement storage controller, deep learning
processing and LSM-tree compaction in FPGA, respectively.
Morpheus [22] implements data deserialization inside the
SSD device using ARM embedded cores. These approaches
are complementary to Hayagui, whose code that runs in the
general purpose cores would utilize their host-side APIs and
library. We have already discussed the direct I/O approaches
for GPU applications in Section 3.
Accelerator management systems. iPipe [11] schedules ap-
plications across SmartNICs and host CPUs based on portable
context descriptors. However, it does not support direct device
access, and relies on the host-side process when storage access
is needed. DLibOS offers a library OS abstraction to accel-
erator applications, but it does not support storage devices.
M3X [1] allows the accelerator applications to access storage
and network stack directly via DMA, but relies on custom
hardware. Further, it does not consider performance problems
with general purpose cores of accelerator devices.
Accelerator applications. Applications currently explored to
benefit from SoC-based accelerators include bioinformatics
applications, which are featured in this paper, scientific com-
puting [8], machine learning [17], data analytics [17], query
processing of relational database [6] and Network Function
Virtualization applications [9]. All of these applications, ex-

https://github.com/liva/hayagui

0.1 1 8 64

readseq

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

[m
s]

0.1 1 8 64

readrand

0.0

0.2

0.4

0.6

0.1 1 8 64

fillseq

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 8 64

fillrand

0.0

2.5

5.0

7.5

10.0

12.5

0.1 1 8 64

fillsync

0

5

10

15

I/O Size [KB]

Redirect Hayagui

Figure 6: db_bench Results. Workloads represent sequential/random reads/writes, and sync to the storage medium. Hayagui
improves the baselines by 32–80%. In 0.1 KB requests, readseq and fillrand are invisible but improved by 49 and 79%, respectively.

Update Heavy

Read Mostly

Read Only

Read Latest

1KB

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 [K

Op
s/

s]

Update Heavy

Read Mostly

Read Only

Read Latest

4KB
Update Heavy

Read Mostly

Read Only

Read Latest

8KB

Redirect
Hayagui

Figure 7: YCSB Results. Hayagui outperforms the system-
call redirection baselines by 12–89%.

0 20 40 60 80 100 120 140 160
Exec. Time [Sec]

Bacteria

Killfish

Mouse

Redirect Hayagui

Figure 8: Genome Sequence Matching Performance.
Hayagui reduces the end-to-end execution time by 33–46%
or by 8–53 seconds. Data sets are are 2.1–15.0 GB in size (see
Table 1 in Section 2.3).

cept for the last two ones, would need to handle large data,
which therefore would benefit from Hayagui.

7 Conclusion
Hayagui is the first system that runs the whole storage stack
on the general-purpose cores of a SoC-based accelerator to
increase the overall system processing capacity by minimizing
the data movement and saving as much resources as possi-
ble for other tasks or applications executed on the host-side
CPUs. We explored a direct storage I/O architecture in de-
signing Hayagui, and empirically demonstrated its efficiency
and usefulness using microbenchmarks and a bioinformat-
ics application. The next section discusses further research
questions.

8 Discussion
SoC-based accelerators introduce many problems and oppor-
tunities to build or use storage systems, as discussed below.

Feasibility of direct storage access architectures. In this
paper we used a NEC SX-Aurora Vector Engine equipped
with general purpose cores, and enabled direct storage I/O
using vendor-specific PCIe APIs (Section 4). Some other
accelerators such as SmartNICs would allow for similar orga-
nization, but what about the future accelerator devices? Will
they accept, ease or disable the direct storage access?

General purpose core considerations. Our accelerators
have relatively low-performance general-purpose cores, and
we have already observed notable limitations, such as slow
malloc and atomic operations. How could we overcome such
weakness that would be prevalent also in other accelerator
devices? Further, although some accelerators, such as high-end
SmartNICs, have rather beefy CPU cores [11], can we assume
the same performance characteristics with the host CPUs?

Accelerator engine considerations. Accelerator devices
primarily focus on their specialized compute engines, such
as vector processors and encryption engines, typically used
by specific programming models or APIs. Given that their
general-purpose cores can be weak, is it possible to benefit
from these specialized engines to design storage stacks?

Storage resource sharing. Our current design dedicates
an entire storage device to the accelerator device. Do we need
a shared name space across all the (potentially heterogeneous)
accelerator devices and host CPUs, and if so, how could this
be achieved? We would design a centralized architecture
managed by one of the host or accelerators, or a distributed
architecture between the host and accelerators, which would
pose challenges in consistency and performance locality.

Generic libraries and frameworks for accelerator stor-
age stack. Since it would be painful if we’d need to build
an efficient storage stack for every accelerator from scratch,
we wish to have performance-critical, accelerator-dependent
libraries that can be utilized by a common framework. Is it
possible to identify features that should be implemented in
such libraries, and define common interfaces?

Acknowledgments
We are grateful to anonymous reviewers for their insightful
comments and Hajime Tazaki at IIJ for his help with LKL
experiments.

References

[1] N. Asmussen, M. Roitzsch, and H. Härtig. “M3x: Au-
tonomous Accelerators via Context-Enabled Fast-Path
Communication”. Proc. USENIX ATC. Jul. 2019.

[2] A. Barbalace, B. Ravindran, and D. Katz. “Popcorn: a
replicated-kernel OS based on Linux”. Proceedings of
the Linux Symposium, Ottawa, Canada. 2014.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R.
Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Sing-
hania. “The multikernel: a new OS architecture for
scalable multicore systems”. Proc. ACM SOSP. 2009.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. “Benchmarking cloud serving systems
with YCSB”. Proc. ACM SoCC. 2010.

[5] E. Focht. VE Accelerated IO. https://sx-aurora.
github.io/posts/accelerated-io/. Mar. 2019.

[6] D. Habich, P. Damme, A. Ungethüm, J. Pietrzyk, A.
Krause, J. Hildebrandt, and W. Lehner. “MorphStore-
In-MemoryQuery Processing based onMorphingCom-
pressed Intermediates LIVE”. Proc. ACM SIGMOD.
2019.

[7] Intel. Storage Performance Development Kit. https:
//spdk.io.

[8] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A.
Musa, M. Yokokawa, T. Aoyama, M. Sato, and H.
Kobayashi. “Performance evaluation of a vector su-
percomputer SX-aurora TSUBASA”. Proc. ACM/IEEE
SC. 2018.

[9] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella,
M. M. Swift, and T. Lakshman. “UNO: uniflying host
and smart NIC offload for flexible packet processing”.
Proc. ACM SoCC. 2017.

[10] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li.
“Cognitive SSD: A deep learning engine for in-storage
data retrieval”. Proc. USENIX ATC. Jul. 2019.

[11] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. “Offloading Distributed Applications
Onto smartNICs Using iPipe”. Proc. ACM SIGCOMM.
2019.

[12] M. Liu, S. Peter, A. Krishnamurthy, and P. M.
Phothilimthana. “E3: Energy-Efficient Microservices
on SmartNIC-Accelerated Servers”. Proc. USENIX
ATC. Jul. 2019.

[13] LLVM for NEC SX-Aurora VE. https://github.
com/sx-aurora-dev/llvm.

[14] Mechanisms for VE specific system calls for VEOS on
SX-Aurora TSUBASA. https://github.com/veos-
sxarr- NEC/libsysve/blob/feature- vepci-
v2.2/doc/VEPCI.md.

[15] MicronSSD. UNVMe - A User Space NVMe Driver.
https://github.com/MicronSSD/unvme.

[16] S.Moll,M.Kurtenacker,E. Focht, andS.Hack.NECSX-
Aurora TSUBASA and the LLVM compiler infrastruc-
ture. https://fs.hlrs.de/projects/teraflop/
28thWorkshop_talks/WSSP28_SMoll_llvm-sve.
pdf.

[17] NEC.Machine Learning and data analytics MW for SX-
Aurora TSUBASA. https://www.hpc.nec/events/
isc - 18 / aurora - forum / presentations / 3 _
AuroraForum_MLMW4Aurora_Takeo_Hosomi.pdf.

[18] NEC. NEC SX-Aurora TSUBASA - Vector Engine.
https://www.nec.com/en/global/solutions/
hpc/sx/vector_engine.html.

[19] J. Ren. YCSB-C. https : / / github . com / wujy -
cs/YCSB-C.

[20] Z. Ruan, T. He, and J. Cong. “INSIDER: Designing
In-Storage Computing System for Emerging High-
Performance Drive”. Proc. USENIX ATC. Jul. 2019.

[21] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
“GPUfs: integrating a file system with GPUs”. ACM
SIGPLAN Notices. 4. 2013.

[22] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and
S. Swanson. “Morpheus: creating application ob-
jects efficiently for heterogeneous computing”. Proc.
ACM/IEEE ISCA. 2016.

[23] T. Zhang, J. Wang, X. Cheng, H. Xu, N. Yu, G. Huang,
T. Zhang, D. He, F. Li, W. Cao, Z. Huang, and J. Sun.
“FPGA-Accelerated Compactions for LSM-based Key-

Value Store”. Proc. USENIX FAST. Feb. 2020.

https://sx-aurora.github.io/posts/accelerated-io/
https://sx-aurora.github.io/posts/accelerated-io/
https://spdk.io
https://spdk.io
https://github.com/sx-aurora-dev/llvm
https://github.com/sx-aurora-dev/llvm
https://github.com/veos-sxarr-NEC/libsysve/blob/feature-vepci-v2.2/doc/VEPCI.md
https://github.com/veos-sxarr-NEC/libsysve/blob/feature-vepci-v2.2/doc/VEPCI.md
https://github.com/veos-sxarr-NEC/libsysve/blob/feature-vepci-v2.2/doc/VEPCI.md
https://github.com/MicronSSD/unvme
https://fs.hlrs.de/projects/teraflop/28thWorkshop_talks/WSSP28_SMoll_llvm-sve.pdf
https://fs.hlrs.de/projects/teraflop/28thWorkshop_talks/WSSP28_SMoll_llvm-sve.pdf
https://fs.hlrs.de/projects/teraflop/28thWorkshop_talks/WSSP28_SMoll_llvm-sve.pdf
https://www.hpc.nec/events/isc-18/aurora-forum/presentations/3_AuroraForum_MLMW4Aurora_Takeo_Hosomi.pdf
https://www.hpc.nec/events/isc-18/aurora-forum/presentations/3_AuroraForum_MLMW4Aurora_Takeo_Hosomi.pdf
https://www.hpc.nec/events/isc-18/aurora-forum/presentations/3_AuroraForum_MLMW4Aurora_Takeo_Hosomi.pdf
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://github.com/wujy-cs/YCSB-C
https://github.com/wujy-cs/YCSB-C

	Introduction
	Motivation
	System Model
	Accelerator Data Management Problem
	Case Study: Genome Sequence Matching

	Design Space
	Hayagui Architecture
	Experimental Results
	Related Work
	Conclusion
	Discussion
	References

