Opening Up Kernel-Bypass TCP Stacks

Shinichi Awamoto and Michio Honda
School of Informatics, University of Edinburgh

7th July, 2025 @ USENIX ATC

\". THE UNIVERSITY of EDINBURGH

%) informatics

Motivation

« Kernel bypass TCP stacks offer high performance

= Clean-slate design
= Benefit from fast packet 1/0 like DPDK
= Optimization for specific workloads like RPCs

« These are great, but can we use those stacks in practice?

Everybody “loves” TCP

« Compatibility of apps, peers and middleboxes

-

~

HTTP ~ ™\ HTTP
TCP ¢ TCP p TCP
P +—E P %—+ P % P %» P
Ethernet Ethernet Ethernet Ethernet Ethernet
%)L J U L VRN Y,
Web server Router middlebox Router Web client

Everybody “loves” TCP

 Cloud/datacenter apps also use TCP (and middleboxes)

O
8’: |||Ll
Ci I|Um
-~ ™ cQJ)envoy AmazonELB e N\
HTTP ~ ~ HTTP

TCP TCP » TCP

<
P —E P %— P % P %» P
Ethernet Ethernet Ethernet

| j L J & Ethernet j L J k Ethernet L

Compute/storage (virtual) Router Middlebox (virtual) Router Compute/storage
nodes, backends nodes, frontends

Kernel-bypass TCP stacks

 Criticisms of kernel TCP:
= Small messages (e.g., RPCs)
= Large number of connections (e.g., CI0K/M)
= Multiple CPU cores

« TCP/IP on top of fast packet 1/0 App
= mTCP [NsDI'14], F-Stack, IX [0sDr14], TCP/IP
TAS [EuroSys'17], Demikernel [sosp21], user | AW packet I/0
to name a few EGV;”GINIC """""""""

Building a practical stack in reality

« TCP has many extensions
= With and without RFCs (e.g., [1])

« Kernel TCP stack has long been evolved
= e.g., 5-25% LoC modification each year [2]

« Creating a practical stack needs community support
= At least that for many, not hyperscalers

What stack could we pick or build?

[1] Cheng et. al., “Making Linux TCP Fast”, Netdev 2016
[2] Pismenny et. al., “Autonomous NIC offload”, ASPLOS'21

Problem:

We don’t know how proposed stacks perform in various
workloads and compare to each other

Limited comparison and workload when a new stack is proposed, likely
due to difficulty of running existing ones.

“Hacking into these problems will take an unexpected amount of engineering effort with
rather limited community support. Hence, building a new user-space TCP from scratch can be
actually more time-saving.” - Deploying User-space TCP at Cloud Scale with Luna, USENIX ATC’23

Contributions

« This paper addresses those problems:

= We compare 6 existing stacks with exactly same application,
hardware and workloads
= We provide third-party experience of using or fixing existing stacks

There is no single stack that always performs the best

Methodology

e Server: minimum HTTP server
= Optimized for individual stacks

 Client: ordinary wrk/Linux

= slight modification for multicore scalability

4 N [)
wrk Minimum HTTP server (nophttpd)

Pt Linux mTCP [F-Stack TAS. IX |Demik.
o netmap or specific DPDK ver.

LD HE)

Stack selection

 Based on the architecture

Thread Process i :Protection ring " Rust

ENICqueue C | CPU Core A|App |S| Stack

[°°° Ll h anannnn) [] ooo

mTCP F-Stack IX TAS Demikernel

Stack selection

 Based on the architecture

Architecture API TCP impl. Use by author(s) Use w/o author(s)
mTCP [32] App-stack thread pairon Socket-like (no Custom Up to 8 KB data and 8 Up to 8 KB data or 24 cores [3,
the same core semantics) cores [32, 31, 50, 38] 41,7, 36, 81]
F-Stack [16] App-level processing in Event callback FreeBSD - Up to 8 KB data [57, 81], 8
the stack thread to the stack cores [10] or 64 conns. [58]
IX [7] App-level processing in Packet-level 1wIP [19] Up to 8 KB data [38] Up to 64 B data [36],4 KB w/ 8
the stack thread TX/RX buffers cores [81] or low data rate [41]
TAS [36] Dedicated threads for Socket-like Custom Up to 2K B data and 24 Up to 0.3 MRegs with high
TCP data path cores [36, 72, 75] overhead apps [41]
Demikernel App-level processing in Packet-level Custom Upto 16 conns. [64] and Up to 64 conns. [58]

[80]

the stack thread in Rust

TX/RX buffers

256 K B data [80, 15]

Large send

« Linux performs the best mm Linux mEm F-Stack X
o Why lal’ge Send matterS? B mTCP o TAS Demikernel
15.0 R ..
= Data-driven workloads e EE
» Terabit Ethernet W= = B
MR f e R B B B o
2 & E E E E
s | £
= B BN O N s BN | e

B
Ul

128 256 51.2 1024 2048
Message Size [KB]

2
o

ldle-time small-message latency

« Demikernel does the best job for very small messages

Latency [ps]

Hl Linux B mTCP B F-Stack EE TAS X Demikernel

140F

1205
1oo:
803.-
605
40:

20}

64 512 1024 4096 32K 65K
Message Size [B]

Connection scalability

« |X performs the best B Lnux EEE F-Stack X

Bl mTCP e TAS Demikernel

100 200 400 800 1600
of Connections

Multicore scalability

« TAS performs the best B Lnux mem F-Stack X

B mTCP e TAS

1 4 8 16 24
of Server CPU Cores

Discussion

« How to profile/analyze kernel-bypass stacks?

= Perf-like tools require code knowledge
= NSight [Nsprr22] would be useful

* Should we enhance kernel or kernel-bypass stack?
= Low connection scalability with Linux and F-Stack is prohibiting
= Run-to-completion would be unsuitable for efficient ack-clocking

More discussion in the paper

Conclusion

e No stacks serve all the workloads well

Best bulk transfer

o

The Demikernel Datapath OS Architecture for
Microsecond-scale Datacenter Systems

Irene Zhang”, Amanda Raybuck®, Pratyush Patel”, Kirk Olynyk®, Jacob Nelson”,

Omar S. Navarro Leija*, Ashlie Martinez*, Jing Liu*, Anna Kornfeld Simpson®, Sujay Jayakar™,
Pedro Henrique Penna®, Max Demoulin*, Piali Choudhury®, Anirudh Badam®
*Microsoft Research, *University of Texas at Austin, *University of Washington,

*University of Wisconsin Madison, *University of Pennsylvania, “Zerowatt, Inc.

Abstract like Redis [80], can achieve single-digit microsecond laten-
cies. To avoid becoming a bottleneck, datapath systems soft-
ware must operate at sub-microsecond — or nanosecond — la-

Datacenter systems and I/O devices now run at single-digit

Best idle-latency

IX: A Protected Dataplane Operating System for
High Throughput and Low Latency

Adam Belay' George Prekas? Ana Klimovic! Samuel Grossman'
Christos Kozyrakis! Edouard Bugnion?
!Stanford University 2EPFL
Abstract The conventional wisdom is that there is a basic mis-

. . . . i match between these requirements and existing network-
The conventional wisdom is that aggressive networking ing stacks in commodity operating systems. Conse-

Best RPC throughput

TAS: TCP Acceleration as an OS Service

Antoine Kaufmann Tim Stamler Simon Peter
MPI-SWS The University of Texas at Austin The University of Texas at Austin

Naveen Kr. Sharma
University of Washington

ACM Reference Format:

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Kri , and Thomas Anderson. 2019, TAS: TCP
Acceleration as an OS Service. In Fourteenth EuroSys Conference
2019 (EuroSys '19), March 2528, 2019, Dresden, Germany. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3302424.3303985

Abstract

As datacenter network speeds rise. an increasing fraction of

Best multicore scalability

Stack modifications, tools and configuration used in this paper: https://github.com/uoenoplab/stackbench

Arvind Krishnamurthy
University of Washington

Thomas Anderson
University of Washington

1 Introduction

As network speeds rise, while CPU speeds stay stagnant,
TCP packet processing efficiency is becoming ever more im-
portant. Many data center applications require low-latency
and high-throughput network access to deliver remote proce-
dure calls (RPCs). At the same time, they rely on the lossless,
in-order delivery properties provided by TCP. To provide this
convenience, software TCP stacks consume an increasing
fraction of CPU resources to process network packets.

