
Shinichi Awamoto and Michio Honda
School of Informatics, University of Edinburgh

7th July, 2025 @ USENIX ATC

Opening Up Kernel-Bypass TCP Stacks



Motivation

• Kernel bypass TCP stacks offer high performance
▪ Clean-slate design
▪ Benefit from fast packet I/O like DPDK
▪ Optimization for specific workloads like RPCs

• These are great, but can we use those stacks in practice?



Everybody “loves” TCP

• Compatibility of apps, peers and middleboxes

Ethernet
IP
TCP
HTTP

Ethernet
IP

Ethernet
IP

Ethernet
IP
TCP
HTTP

Ethernet
IP
TCP

Web server Web clientRouterRouter middlebox



Everybody “loves” TCP
• Cloud/datacenter apps also use TCP (and middleboxes)

Ethernet
IP
TCP
HTTP

Ethernet
IP

Ethernet
IP

Ethernet
IP
TCP
HTTP

Ethernet
IP
TCP

Compute/storage 
nodes, backends

Compute/storage
nodes, frontends

(virtual) Router(virtual) Router Middlebox



Kernel-bypass TCP stacks

• Criticisms of kernel TCP:
▪ Small messages (e.g., RPCs)
▪ Large number of connections (e.g., C10K/M)
▪ Multiple CPU cores

• TCP/IP on top of fast packet I/O 
▪ mTCP [NSDI’14], F-Stack, IX [OSDI’14], 

TAS [EuroSys’17], Demikernel [SOSP’21], 
to name a few NIC

Raw packet I/O
TCP/IP

App

user
kernel
HW



Building a practical stack in reality

• TCP has many extensions
▪ With and without RFCs (e.g., [1])

• Kernel TCP stack has long been evolved
▪ e.g., 5–25% LoC modification each year [2]

• Creating a practical stack needs community support
▪ At least that for many, not hyperscalers

[1] Cheng et. al., “Making Linux TCP Fast”, Netdev 2016
[2] Pismenny et. al., “Autonomous NIC offload”, ASPLOS’21

What stack could we pick or build?



Problem: 

We don’t know how proposed stacks perform in various 
workloads and compare to each other

Limited comparison and workload when a new stack is proposed, likely 
due to difficulty of running existing ones.

“Hacking into these problems will take an unexpected amount of engineering effort with 
rather limited community support. Hence, building a new user-space TCP from scratch can be 
actually more time-saving.” - Deploying User-space TCP at Cloud Scale with Luna, USENIX ATC’23



Contributions

• This paper addresses those problems:
▪ We compare 6 existing stacks with exactly same application, 

hardware and workloads
▪ We provide third-party experience of using or fixing existing stacks

There is no single stack that always performs the best



Methodology

• Server: minimum HTTP server
▪ Optimized for individual stacks

• Client: ordinary wrk/Linux
▪ slight modification for multicore scalability



Stack selection
• Based on the architecture



Stack selection
• Based on the architecture



Large send
• Linux performs the best
• Why large send matters?

▪ Data-driven workloads
▪ Terabit Ethernet



Idle-time small-message latency
• Demikernel does the best job for very small messages



Connection scalability
• IX performs the best



Multicore scalability
• TAS performs the best



Discussion

• How to profile/analyze kernel-bypass stacks?
▪ Perf-like tools require code knowledge
▪ NSight [NSDI’22] would be useful

• Should we enhance kernel or kernel-bypass stack?
▪ Low connection scalability with Linux and F-Stack is prohibiting
▪ Run-to-completion would be unsuitable for efficient ack-clocking

More discussion in the paper



Conclusion
● No stacks serve all the workloads well

Best idle-latency

Best bulk transfer Best RPC throughput

Best multicore scalability
Stack modifications, tools and configuration used in this paper: https://github.com/uoenoplab/stackbench


